翼身融合民机技术专栏

基于数值模拟的翼身融合布局飞机上悬式发动机布置技术

  • 赵振山 ,
  • 冯剑 ,
  • 苗树明 ,
  • 杜羽
展开
  • 航空工业空气动力研究院 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034

收稿日期: 2019-03-25

  修回日期: 2019-04-03

  网络出版日期: 2019-05-29

基金资助

民用飞机专项研究(MJZ-2014-F-08)

Blended-wing-body aircraft overhanging engine layout technology based on numerical simulation

  • ZHAO Zhenshan ,
  • FENG Jian ,
  • MIAO Shuming ,
  • DU Yu
Expand
  • High Speed and High Reynolds Number Aerodynamics Key Laboratory, AVIC Aerodynamics Research Institute, Shenyang 110034, China

Received date: 2019-03-25

  Revised date: 2019-04-03

  Online published: 2019-05-29

Supported by

Civil Aircraft Special Research (MJZ-2014-F-08)

摘要

发动机进排气对飞机气动特性具有重要影响。为了评估翼身融合布局(BWB)飞机上悬式发动机不同布置方式对全机气动特性的影响,首先开展了发动机短舱进排气与全机流场耦合的数值模拟技术研究,验证了计算方法的正确性。在此基础上,针对发动机安装于翼身升力面之上的BWB运输类飞机,开展飞机巡航飞行条件下,发动机不同支撑高度下沿流向及展向不同安装位置的进排气与全机流场耦合数值模拟,评估发动机不同布置方式对全机气动特性的影响,形成发动机不同布置方式影响的规律性结论。

本文引用格式

赵振山 , 冯剑 , 苗树明 , 杜羽 . 基于数值模拟的翼身融合布局飞机上悬式发动机布置技术[J]. 航空学报, 2019 , 40(9) : 623051 -623051 . DOI: 10.7527/S1000-6893.2019.23051

Abstract

Engine intake and exhaust have important influence on aircraft aerodynamic characteristics. To evaluate the aerodynamic characteristics of Blended-Wing-Body (BWB) aircraft with different overhanging engine layout modes, the numerical simulation technology of simulating the coupling between the intake and exhaust of the engine nacelle and the flow field of the aircraft is first carried out to verify the correctness of the calculation method. On this basis, a numerical simulation of the coupling between intake and exhaust of aircraft with different supporting heights, different streamwise and spanwise positions of the engine under the condition of aircraft cruising is carried out to evaluate the different layouts of the engine. The influence of different layout modes on the aerodynamic characteristics of aircraft is evaluated, and the regularity of the influence of different layout modes of engine is formed.

参考文献

[1] KAWAI R T, FRIEDMAN D M, SERRANO L. Blended Wing Body (BWB) Boundary Layer Ingestion (BLI) inlet configuration and system studies:NACA/CR-2006-214534[R]. Washington, D. C.:NASA, 2006.
[2] POTSDAM M A, PAGE M A, LIEBECK R H. Blended wing body analysis and design:AIAA-1997-2317[R]. Reston, VA:AIAA, 1997.
[3] 朱自强, 王晓路, 吴宗成, 等. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008,29(1):49-59. ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59(in Chinese).
[4] 张曙光, 陆艳辉, 巩磊, 等. 250座级翼身融合无尾布局客机操稳特性设计研究[J]. 航空学报, 2011,32(10):1761-1769. ZHANG S G, LU Y H, GONG L, et al. Research on design of stability and control of a 250-seat tailless blended-wing-body civil transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1761-1769(in Chinese).
[5] LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516.
[6] RODRIGUEZ D L. A multidisciplinary optimization method for designing boundary layer ingestion inlets[D]. Palo Alto, CA:Stanford University, 2001:157-194.
[7] KO Y Y A. The multidisciplinary design optimization of a distributes propulsion blended-wing-body aircraft[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 2003:14-23.
[8] 张彬乾, 陈真利, 李杰. 亚音速大型民机气动布局发展趋势[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会, 2007. ZHANG B Q, CHEN Z L, LI J. Development trend of aerodynamic layout for subsonic large-scale civil aircraft[C]//High Level Forum on Key Technologies for Large Aircraft and 2007 Annual Meeting of Chinese Society of Aeronautics and Astronautics, 2007(in Chinese).
[9] WAKAYAMA S. Multidisciplinary design optimization of the blended-wing-body:AIAA-1998-4938[R]. Reston:AIAA, 1998.
[10] KUNTAWALA N B, HICKEN J E, ZINGG D W. Preliminary aerodynamic shape optimization of a blended-wing-body aircraft configuration:AIAA-2011-0642[R]. Reston:AIAA, 2011.
[11] ANABTAWI A. Experimental investigation of boundary layer ingestion into diffusing inlets[D]. Los Angeles, CA:University of Southern California,1999:1-4.
[12] VICROY D D. Blended-wing-body low-speed flight dynamics:Summary of ground tests and sample results:AIAA-2009-0933[R]. Reston, VA:AIAA, 2009.
[13] RODRIGUEZ D L. A multidisciplinary optimization method for designing boundary layer ingesting inlet[D]. Palo Alto, CA:Stanford University, 2000:2-3.
[14] MORRIS A. MOB a European distributed multidisciplinary design and optimization project:AIAA-2002-5444[R]. Reston, VA:AIAA, 2002.
[15] PAMBAGJO T E, NAKAHASHI K, OBAYASHI S, et al. Aerodynamic design of a medium size blended wing body airplane:AIAA-2001-0129[R]. Reston, VA:AIAA, 2001.
[16] WAKAYAMA S, KROO I. The challenge and promise of blended wing body optimization:AIAA-1998-4736[R]. Reston, VA:AIAA, 1998.
[17] WAKAYAMA S. Blended wing body optimization problem setup:AIAA-2000-4740[R]. Reston, VA:AIAA, 2000.
[18] 高峰. 翼身融合体飞机的外形设计与气动改进[D]. 南京:南京航空航天大学, 2009:14-37. GAO F. Shape design and aerodynamic improvement of blended-wing-body aircraft[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2009:14-37(in Chinese).
[19] KRESSE N. Challenges and potential of BWB configuration(results of the project VELA-Very Large Aircraft)[R]. 2006.
[20] 单继祥. 大飞机发动机进排气数值模拟研究[D]. 北京:北京航空航天大学, 2008:21-45. SHAN J X. Numerical simulation of the intake and exhaust of a large aircraft engine[D]. Beijing:Beihang University, 2008:21-45(in Chinese).
[21] 明磊. 翼身融合体民用运输机空气动力学设计[D]. 长沙:国防科技大学, 2005:3-6. MING L. Aerodynamics design of a blended-wing-body civil transport[D]. Changsha:National University of Defense Technology, 2005:3-6(in Chinese).
[22] 吴江浩, 刘晓静. 翼身融合(BWB)布局客机气动特性分析[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会, 2007. WU J H, LIU X J. Aerodynamic characteristics analysis of civil blended wing-body aircraft[C]//High Level Forum on Key Technologies for Large Aircraft and 2007 Annual Meeting of Chinese Society of Aeronautics and Astronautics, 2007(in Chinese).
[23] PEIGIN S, EPSTEIN B. Computational fluid dynamics driven optimization of blended wing body aircraft[J]. AIAA Journal, 2006, 44(11):2736-2745.
[24] CONWAY S.Implementation and validation of an engine nacelle boundary condition in Edge 3.2:FOI-R-1320-SE[R].Stockholm:Swedish Defence Research Agency,2004.
文章导航

/