流体力学与飞行力学

鸭式布局飞机矢量喷流对地面效应影响的风洞试验

  • 魏中成 ,
  • 王晋军 ,
  • 袁兵
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 航空工业成都飞机设计研究所, 成都 610091

收稿日期: 2019-03-27

  修回日期: 2019-04-15

  网络出版日期: 2019-10-11

Wind tunnel test of canard aircraft interactive behaviors between vectoring jet and ground effect

  • WEI Zhongcheng ,
  • WANG Jinjun ,
  • YUAN Bing
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. AVIC Chengdu Aircraft Design&Research Institute, Chengdu 610091, China

Received date: 2019-03-27

  Revised date: 2019-04-15

  Online published: 2019-10-11

摘要

针对单发鸭式布局飞机,通过低速风洞试验,研究了矢量喷流对飞机地面效应的影响特性。研究结果表明:发动机喷流使得飞机的地面效应增强,升力系数增加,降低飞机起飞/降落时的飞行速度,缩短起降距离,从而改善飞机起降性能。发动机喷管上/下偏转时,矢量喷流对飞机上下表面气流诱导不对称,均使地面效应阻力系数增量减小。在此基础上,基于数值模拟结果对喷流与地面效应的相互作用机理进行了分析。

本文引用格式

魏中成 , 王晋军 , 袁兵 . 鸭式布局飞机矢量喷流对地面效应影响的风洞试验[J]. 航空学报, 2019 , 40(11) : 123031 -123031 . DOI: 10.7527/S1000-6893.2019.23031

Abstract

An experimental study of single-engine canard aircraft interactive behaviors between vectoring jet and ground effect is conducted in the low-speed wind tunnel. The results indicate that jets can enhance the ground effect of the aircraft, increase the lift coefficient, reduce flight velocity of take-off/landing, and shorten the distance of take-off/landing, improving the performance of take-off/landing. When the nozzle of vectoring engine is deflected upward or downward, the airflows induced by vectoring jets in the upper and lower surface of the aircraft are asymmetrical, reducing the increments of drag coefficient caused by ground effect. On this basis, the flow field mechanism of interactive behaviors between vectoring jet and ground effect is analyzed by numerical simulation.

参考文献

[1] GILYARD G B, BOLONKIN A. Optimal pitch thrust-vector angle and benefits for all flight regimes:NASA/TM-2000-209021[R]. Washington, D.C.:NASA, 2003.
[2] 赵群力. 推力矢量在战斗机上的应用[J]. 国际航空, 1999(1):20-23. ZHAO Q L. The application of thrust vectoring on fighters[J]. International Aviation, 1999(1):20-23(in Chinese).
[3] BURSEY R, DICKINSON R. Flight test result of the F-15S/MTD thrust vectoring/thrust reversing exhaust nozzle:AIAA-1990-1906[R]. Reston, VA:AIAA, 1990.
[4] 方昌德. 飞机推力矢量技术发展综述[J]. 航空科学技术,1998(2):10-12. FANG C D. Developing status of thrust vectoring control technology[J]. Aeronautical Science and Technology, 1998(2):10-12(in Chinese).
[5] BARHAM R W. Thrust vector aided maneuvering YF-22 advanced tactical fighter prototype:AIAA-1994-2105[R]. Reston, VA:AIAA, 1994.
[6] TSENG J B, LAN C E. Aerodynamics of thrust vectoring by Navier-Stokes solutions:NASA Grant NAG 1-837[R]. Washington, D.C.:NASA, 1991.
[7] 李栋, 焦予秦, 宋科. 喷流-外流干扰流场数值模拟[J]. 航空学报, 2008, 29(2):292-296. LI D, JIAO Y Q, SONG K. Numerical simulation of external flow interfered by jet flow[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2):292-296(in Chinese).
[8] SHEU W L, LAN C E. Experimental investigation of the effect of thrust vectoring on lateral-directional aerodynamics at high angles of attack:AIAA-1994-1809[R]. Reston, VA:AIAA, 1994.
[9] WANG Z J, JIANG P, GURSUL I. Effect of thrust-vectoring jets on delta wing aerodynamics[J]. Journal of Aircraft, 2007, 44(6):1877-1888.
[10] DENG X Y, WANG Y K. An experimental study of interactive behaviors between vectoring jet and main flows[C]//Aerospace Science Meeting of AIAA. Reston, VA:AIAA, 1998.
[11] HITZEL S M, WEIDE E, TREMEL U. X-31A vector high angle of attack descent Euler and Navier-Stokes simulations of unsteady maneuvers[C]//Proceedings of 23rd International Congress of Aeronautical Sciences. Toronto:ICAS Press, 2002, 243:1-9.
[12] WANG Y K, DENG X Y. Effects of vectoring jet on aerodynamic characteristics of aircraft[J]. Chinese Journal of Aeronautics, 1998, 11(2):81-87.
[13] 王晋军, 刘激瀛, 薛启智. 矢量喷流对65°三角翼前缘涡破裂的影响[J]. 流体力学实验与测量, 2000,14(3):61-65. WANG J J, LIU J Y, XUE Q Z. The effects of vectored jet on leading edge vortex breakdown of 65° delta wing[J]. Experiments and Measurements in Fluid Mechanics, 2000,14(3):61-65(in Chinese).
[14] 汤伟, 黄勇, 傅澔. 推力矢量对飞机大迎角动态气动特性的影响[J]. 航空学报, 2018, 39(4):121648. TANG W, HUANG Y, FU H. Effect of thrust vector on dynamic aerodynamic characteristics of aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121648(in Chinese).
[15] 司芳芳, 袁先旭, 李建强, 等. 推力转向喷流与高速主流干扰参数影响规律的数值模拟研究[J]. 空气动力学学报, 2012, 30(5):583-591. SI F F, YUAN X X, LI J Q, et al. The study of the parameters' infection between vectoring jet and high speed main flows interaction[J]. Acta Aerodynamica Sinica, 2012, 30(5):583-591(in Chinese).
[16] MCWATERS M A. F-35 conventional model jet-effects testing methodology:AIAA-2015-2404[R]. Reston, VA:AIAA, 2015.
[17] 王延奎, 邓学蓥, 张祖庚. 矢量喷流下平尾偏转对飞机气动性能的影响[J].北京航空航天大学学报, 2003, 29(2):156-160. WANG Y K, DENG X Y, ZHANG Z G. Experimental investigation on effect of horizontal tail deflection on aerodynamic characteristics of aircraft under vectoring jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2):156-160(in Chinese).
[18] 李建强, 李耀华, 郭旦平, 等. 2.4米跨声速风洞推力矢量试验技术[J]. 空气动力学学报, 2016, 34(1):20-26. LI J Q, LI Y H, GUO D P, et al. The thrust vectoring experiment technique in the 2.4 m×2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):20-26(in Chinese).
[19] 高静, 李聪, 杨勇, 等. 低速风洞推力矢量试验背撑干扰特性试验研究[J]. 实验流体力学, 2005,19(3):10-13. GAO J, LI C, YANG Y, et al. Researches of dorsal support interference in low speed wind tunnel thrust vector test[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):10-13(in Chinese).
[20] 贾毅, 郑芳, 黄浩, 等. 低速风洞推力矢量试验技术研究[J]. 实验流体力学, 2014, 28(6):92-97. JIA Y, ZHENG F, HUANG H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97(in Chinese).
[21] 金长江, 范立钦, 周士林. 飞机飞行性能计算[M]. 北京:国防工业出版社,1983:200-216. JIN C J, FAN L Q, ZHOU S L. Flight performance calculation of aircraft[M]. Beijing:National Defense Industry Press, 1983:200-216(in Chinese).
文章导航

/