为了解决危险天气和军航活动对管制运行的影响,使用动态网络流方法对突发事件下短期空中交通流量调度问题展开研究。首先,结合中国民航管制的特点,分析了突发事件对流量管理的影响。同时,根据航路航线网络及其高度层的特点,给出了网络和高度层的数学描述,并根据机型将航空器分成大、中和小3种交通流,介绍了使用多品种流描述3种机型的必要性;其次,根据网络拥挤程度随时间和流量变化的特点、危险天气随机变化的特点、空中等待和地面等待费用差异的特点构建了3个优化目标,考虑机场容量、扇区容量、航班连续性和扇区连续性约束建立了多目标优化模型;再次,针对军航活动时需要协调空域的特点,多品种流模型求解时间复杂度高,不能适应短期流量管理的缺陷,改进了逐步宽容约束法,设计了一种阶段式求解的近似算法;最后,以西南空管局管制的空域为例,利用实际流量数据,设计了3个场景进行仿真。结果表明,所提模型和算法能有效求解突发事件下的短期流量调度问题,算法效率比起传统算法在大流量下更具优势。
To address the disturbance like extreme weather conditions and air traffic control for military activities, a dynamic network flow method is proposed. Firstly, combined with the characteristics of civil aviation control in China, the impact of emergencies on traffic management is analyzed. Also, this paper uses the graph theory to establish a mathematical model for en-route network and flight level. Then the aircraft is divided into large, medium, and small traffic flows, introducing the necessity of using the multi-commodity flow method. Secondly, considering the condition of network congestion varies with time and traffic flow, the random changes of dangerous weather, and the characteristics of air holding and ground holding cost, three optimization objectives are defined, then the multi-objective mathematical model is constructed with the constraint of airport capacity, sector capacity, flight continuity, and sector continuity. Thirdly, to deal with the demand conflict with military activities and the defects of high time complexity in the multi-commodity flow model that can not meet the demand of short-term flow management, the progressive tolerance constraint method is improved, and a phased solution approximation algorithm is designed. Finally, a part of the airspace of the Southwest Air Traffic Control Administration is used for simulation in three scenarios. Simulation results show that the proposed model and algorithm can effectively solve the short-term traffic management problem under emergencies. The algorithm is more efficient than the traditional algorithm under large traffic flows.
[1] 赵征. 空域容量评估与预测技术研究[D].南京:南京航空航天大学,2015. ZHAO Z. Research on airspace capacity assessment and forecast[D]. Nanjing:Nanjing University of Aeronautics and As-tronautics, 2015(in Chinese).
[2] HELME M P. Reducing air traffic delay in a space-time network[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE Press, 1992:236-242.
[3] BERTSIMAS D, PATTERSON S S. The traffic flow management rerouting problem in air traffic control:A dynamic network flow approach[J]. Transportation Science, 2000, 34(3):239-255.
[4] 程朋,崔德光,吴澄.空中交通短期流量管理的动态网络流模型[J].清华大学学报(自然科学版),2000(11):114-118. CHENG P, CUI D G, WU C. Dynamic network flow model for short-term air traffic flow management[J]. Journal of Tsinghua University (Science and Technology), 2000(11):114-118(in Chinese).
[5] 赵嶷飞.管制区短期空中交通流量管理的时隙-航线分配模型及算法[J].航空学报,2009,30(1):121-126. ZHAO Y F. Time-route assignment model and algorithm for short-term area traffic flow management[J]. Acta Aeronautica et Astronautica Sinica, 2009,30(1):121-126(in Chinese).
[6] LULLI G, ODONI A. The European air traffic flow management problem[J]. Transportation Science, 2007, 41(4):431-443.
[7] BERTSIMAS D, LULLI G, ODONI A. An integer optimization approach to large-scale air traffic flow management[J]. Operations Research, 2011, 59(1):211-227.
[8] NOSEDAL J, PIERA M A, RUIZ S, et al. An efficient algorithm for smoothing airspace congestion by fine-tuning take-off times[J]. Transportation Research Part C, 2014, 44(4):171-184.
[9] KICINGER R, CHEN J T, STEINER M, et al. Airport capacity prediction with explicit consideration of weather forecast uncertainty[J]. Journal of Air Transportation, 2016, 24(12):18-28.
[10] 寇玮华,崔皓莹.运费无差异的多品种流交通网络最小费用算法[J].哈尔滨工业大学学报,2014,46(8):122-128. KOU W H, CUI H Y.A minimum cost algorithm for multicommodity flow traffic network which has same convey cost[J]. Journal of Harbin Institute of Technology, 2014, 46(8):122-128(in Chinese).
[11] 寇玮华,崔皓莹.运费有差异的多品种流交通网络最小费用算法[J].同济大学学报(自然科学版),2014,42(8):1196-1202,1210. KOU W H, CUI H Y. An algorithm for minimum cost in multicommodity flow traffic network with different conveyance cost[J]. Journal of Tongji University(Natural science), 2014,42(8):1196-1202,1210(in Chinese).
[12] SAMA M, D'ARIANO A, D'ARIANO P, et al. Scheduling models for optimal aircraft traffic control at busy airports:tardiness, priorities, equity and violations considerations[J]. Omega, 2017, 67(3):81-98.
[13] 《运筹学》教材编写组. 运筹学[M]. 第4版. 北京:清华大学出版社, 2012:349-379. Operation Research Textbook Writing Group. Operation research[M]. 4th ed. Beijing:Tsinghua University Press, 2012:349-379(in Chinese).
[14] VRANAS P B, BERTSIMAS D J, ODONI A R. The multi-airport ground-holding problem in air traffic control[J]. Operations Research, 1994, 42(2):249-261.
[15] 王莉莉,王航臣. 多机场协同下航路网络通行能力优化[J].飞行力学, 2019(1):45-49. WANG L L, WANG H C. Optimization of the en-route network capacity in multi-airport[J].Flight Dynamics, 2019(1):45-49(in Chinese).
[16] BERTSIMAS D, PATTERSON S S. The air traffic flow management problem with enroute capacities[J]. Operations Research, 1998, 46(3):406-422.
[17] 王莉莉,王航臣.终端区受扰通行能力优化的动态网络流模型[J].系统工程,2018,36(8):148-153. WANG L L, WANG H C. Disturbed traffic capacity optimization based on network flow theory in terminal area[J]. Systems Engineering, 2018, 36(8):148-153(in Chinese).
[18] 张凤林,郭波,王正明.基于最可靠路的网络单元重要度研究[J].模糊系统与数学,2005(2):153-158. ZHANG F L, GUO B, WANG Z M. Importance of network cells based on a most reliable path[J]. Fuzzy Systems and Mathematics, 2005(2):153-158(in Chinese).
[19] 田勇. 空中交通流量管理关键技术研究[D].南京:南京航空航天大学,2009. TIAN Y. Research onkey techniques of air traffic flow management[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[20] AHUJA R K, MAGNANTI T L, ORLIN J B. Network flows:Theory, algorithms, and applications[M]. Washigton, D.C.:Prentice Hall, 1993:1-19.
[21] 徐玖平, 李军. 多目标决策理论与方法[M]. 北京:清华大学出版社, 2005:101-104. XU J P, LI J. Multiple objective decision making theory and methods[M]. Beijing:Tsinghua University Press, 2005:101-104(in Chinese).