电子电气工程与控制

基于虚拟慢时间的双基地ISAR成像算法

  • 史林 ,
  • 韩宁 ,
  • 宋祥君 ,
  • 王立兵 ,
  • 崔东辉
展开
  • 1. 陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003;
    2. 中国人民解放军32181部队, 石家庄 050003;
    3. 中国人民解放军63961部队, 北京 100010;
    4. 中国人民解放军78616部队, 成都 610214

收稿日期: 2018-09-18

  修回日期: 2018-10-24

  网络出版日期: 2019-05-23

基金资助

国家自然科学基金(61601496)

Bistatic ISAR imaging algorithm based on virtual slow time

  • SHI Lin ,
  • HAN Ning ,
  • SONG Xiangjun ,
  • WANG Libing ,
  • CUI Donghui
Expand
  • 1. Department of Electronic and Optical Engineering, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China;
    2. China PLA 32181 Unit, Shijiazhuang 050003, China;
    3. China PLA 63961 Unit, Beijing 100010, China;
    4. China PLA 78616 Unit, Chengdu 610214, China

Received date: 2018-09-18

  Revised date: 2018-10-24

  Online published: 2019-05-23

Supported by

National Natural Science Foundation of China (61601496)

摘要

针对双基地角时变引起的逆合孔径雷达(ISAR)图像畸变和散焦问题,提出了一种基于虚拟慢时间的成像算法。首先,分析了双基地角时变对ISAR成像的影响机理。然后,基于图像对比度最大准则估计等效旋转中心位置,完成初次相位补偿。最后,通过虚拟慢时间构建基于非均匀虚拟采样的补偿系数矩阵,并通过方位向非均匀傅里叶变换得到目标的ISAR像。算法基于图像对比度最大准则解决等效旋转中心位置估计问题,通过虚拟慢时间消除转动相位项的高次项影响,利用非均匀傅里叶变换解决随机虚拟采样的谱估计问题。理论分析和仿真结果验证了算法的有效性和鲁棒性。

本文引用格式

史林 , 韩宁 , 宋祥君 , 王立兵 , 崔东辉 . 基于虚拟慢时间的双基地ISAR成像算法[J]. 航空学报, 2019 , 40(5) : 322683 -322683 . DOI: 10.7527/S1000-6893.2019.22683

Abstract

The distortion and defocusing of bistatic Inverse Synthetic Aperture Radar (ISAR) image are induced by the time-varying bistatic angle. To solve this issue, an imaging algorithm based on virtual slow time is proposed. First, the influence mechanism of time-varying bistatic angle on ISAR imaging is analyzed. Then, the equivalent rotation center position is estimated based on the maximum image contrast criterion, completing the initial phase compensation. Finally, the compensation coefficient matrix with non-uniform virtual sampling is constructed based on virtual slow time. The ISAR two-dimensional image of the target is obtained by non-uniform Fourier transform along Doppler direction. Based on the maximum image contrast criterion, the algorithm successfully estimates the equivalent rotation center position. The influence of the quadratic phase terms is alleviated via virtual slow time, and the spectrum estimation problem of random virtual sampling is solved by non-uniform Fourier transform. Theoretical analysis and simulation results have verified the effectiveness and robustness of the algorithm.

参考文献

[1] 杨振起, 张永顺, 骆永军. 双(多)基地雷达系统[M]. 北京:国防工业出版社, 1998:14-15. YANG Z Q, ZHANG Y S, LUO Y J. Bistatic(multi-static) radar system[M]. Beijing:Defense Industry Press, 1998:14-15(in Chinese).
[2] SIMON M P, SCHUH M J, WO A C. Bistatic ISAR images from a time-domain code[J]. IEEE Antennas & Propagation Magazine, 1995, 37(5):25-32.
[3] FABRICE C, ALI K, ALEXANDRE B, et al. Bistatic synthetic aperture radar imaging:Theory, simulation, and validation[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3529-3540.
[4] MARTORELLA M, PALMER J, HOMER J, et al. On bistatic inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1125-1134.
[5] BAI X R, ZHOU F, XING M D, et al. Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar[J]. Transactions on Geoscience and Remote Sensing Letters, 2010, 7(3):430-434.
[6] MA C Z, TAT S Y, GUO Q, et al. Bistatis ISAR imaging incorporating interferometric 3-D imaging technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3859-3867.
[7] 朱仁飞, 朱小鹏, 张群. 基于调频连续波信号的双基地ISAR成像研究[J]. 宇航学报, 2012, 33(2):222-227. ZHU R F, ZHU X P, ZHANG Q. Imaging study on bistatic ISAR based on frequency modulation continuous wave[J]. Journal of Astronautics, 2012, 33(2):222-227(in Chinese).
[8] ZHANG S, SUN S, ZHANG W, et al. High-resolution bistatic ISAR image formation for high-speed and complex-motion targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 8(7):3520-3531.
[9] 赵会朋, 王俊岭, 高梅国, 等. 基于轨道误差搜索的双基地ISAR包络对齐算法[J]. 系统工程与电子技术, 2017, 39(6):1235-1243. ZHAO H P, WANG J L, GAO M G, et al. Bistatic ISAR envelope alignment algorithm based on orbit error search[J]. Systems Engineering and Electronics, 2017, 39(6):1235-1243(in Chinese).
[10] KANG B S, RYU B H, KIM K T. A study on rotational motion compensation method for bistatic ISAR imaging[J]. Journal of Korean Institute of Electromagnetic Engineering & Science, 2017, 28(8):670-677.
[11] 董健, 尚朝轩, 高梅国, 等. 双基地ISAR成像平面研究及回波模型修正[J]. 电子与信息学报, 2010, 32(8):1855-1862. DONG J, SHANG C X, GAO M G, et al. The image plane analysis and echo model amendment of bistatic ISAR[J]. Journal of Electronics & Information Technology, 2010, 32(8):1855-1862(in Chinese).
[12] GUO B F, WANG J L, GAO M G, et al. Research on spatial-variant property of bistatic ISAR imaging plane of space target[J]. Chinese Physics B, 2015, 24(4):507-520.
[13] 马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12):2834-2843. MA J T, GAO M G, HU W H, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics & Information Technology, 2017, 39(12):2834-2843(in Chinese).
[14] ZHAO L Z, MARTORELLA M, DANIELE S, et al. Bistatic three-dimensional interferometric ISAR image reconstruction[J]. IEEE Transactions on Aerospace Electronics and Systems, 2015, 51(2):951-961.
[15] 尹建风, 李道京, 王爱明, 等. 基于星载毫米波顺轨-交轨InISAR的空间运动目标三维成像技术研究[J]. 宇航学报, 2013, 34(2):237-245. YIN J F, LI D J, WANG A M, et al. Three-dimensional imaging technique of space moving target based on spaceborne along-cross track millimeter-wave in-ISAR[J]. Journal of Astronautics, 2013, 34(2):237-245(in Chinese).
[16] MA C Z, TAT S Y, GUO Q, et al. Bistatis ISAR imaging incorporating interferometric 3-D imaging technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3859-3867.
[17] KANG B S, BAE J H, KANG M S, et al. Bistatic ISAR cross-range scaling[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(4):1962-1973.
[18] KANG M S, KANG B S, LEE S H, et al. Bistatic-ISAR distortion correction and range and cross-range scaling[J]. IEEE Sensors Journal, 2017, 17(16):5068-5078.
[19] 韩宁, 王立兵, 何强, 等. 双基角时变下的空间目标BISAR自聚焦算法[J]. 航空学报, 2012, 33(10):1864-1871. HAN N, WANG L B, HE Q, et al. BISAR autofocusing algorithm of space targets in presence of bistatic angle changes[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1864-1871(in Chinese).
[20] 韩宁, 李宝晨, 王立兵, 等. 基于稀疏分解的空间目标双基地ISAR自聚焦算法[J]. 航空学报, 2018, 39(8):322037 HAN N, LI B C, WANG L B, et al. Algorithm for auto focusing of bistatic ISAR of space target based on sparse decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):322037(in Chinese).
[21] 郭宝锋, 尚朝轩, 王俊岭, 等. 双基地角时变下的逆合成孔径雷达越分辨单元徙动校正算法[J]. 物理学报, 2014, 63(23):238406. GUO B F, SHANG C X, WANG J L, et al. Correction of migration through resolution cell in bistatic inverse synthetic aperture radar in the presence of time-varying bistatic angle[J]. Acta Physica Sinica 2014, 63(23):238406(in Chinese).
[22] 郭宝锋, 孙慧贤, 胡文华, 等. 双基地角时变下的ISAR等效旋转中心估计[J]. 航空学报, 2019, 40(3):322432. GUO B F, SUN H X, HU W H, et al. The rotation center estimation method of bistatic ISAR in presence of time-varying bistatic angle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3):322432(in Chinese).
[23] COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90):297-301.
[24] GOERTZEL G. An algorithm for the evaluation of finite trigonometric series[J]. American Mathematical Monthly, 1958, 65:34-35.
[25] 郭宝锋, 尚朝轩, 王俊岭, 等. 基于二体模型的空间目标双基地ISAR回波模拟[J]. 系统工程与电子技术, 2016, 38(8):1771-1779. GUO B F, SHANG C X, WANG J L, et al. Bistatic ISAR echo simulation of space target based on two-body model[J]. Systems Engineering and Electronics, 2016, 38(8):1771-1779(in Chinese).
[26] 胡广书. 数字信号处理导论[M]. 北京:清华大学出版社, 2005:265-267. HU G S. Introduction to digital signal processing[M]. Beijing:Tsinghua University Press, 2005:265-267(in Chinese).
文章导航

/