[1] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[2] PAULUS D, SALMON T, MOHR B, et al. Configuration selection for a 450 passenger ultra-efficient 2020 aircraft[C]//4th European Conference for Aerospace Sciences (EUCASS) Proceedings, 2011:601-618.
[3] GRAHAMN W R, HALL C A, MORALES M V. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34(1):36-51.
[4] SHAW R J, PEDDIE C L. Overview of the Ultra Efficient Engine Technology (UEET) Program:NASA CP-2003-212458[R]. Washington, D.C.:NASA, 2003.
[5] SUDER K L. Overview of the NASA environmentally responsible aviation project's propulsion technology portfolio:AIAA-2012-4038[R]. Reston, VA:AIAA, 2012.
[6] HOOKER J R, WICK A, ZEUNE C, et al. Over wing nacelle installations for improved energy efficiency:AIAA-2013-2920[R]. Reston, VA:AIAA, 2013.
[7] HOOKER J R, WICK A. Design of the hybrid wing body for fuel efficient air mobility operations:AIAA-2014-1285[R]. Reston, VA:AIAA, 2014.
[8] TONG M T, JONES S M, HALLER W J, et al. Engine conceptual design studies for a hybrid wing body aircraft:NASA/TM-2009-215680[R]. Washington, D.C.:NASA, 2009.
[9] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3):883-894.
[10] FERRAR A M, O'BRIEN W F. Progress in boundary layer ingesting embedded engine research:AIAA-2012-4283[R]. Reston,VA:AIAA, 2012.
[11] GISSEN A N, VUKASINOVIC B, MCMILLAN M L, et al. Distortion management in a boundary layer ingestion inlet diffuser using hybrid flow control[J]. Journal of Propulsion and Power, 2013, 30(3):834-844.
[12] FLAMM J D, JAMES K D, BONET J T. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) integration for Hybrid Wing Body (HWB):AIAA-2016-0007[R]. Reston,VA:AIAA, 2016.
[13] DEERE K A, LUCKRING J M, MCMILLIN S N, et al. CFD predictions for transonic performance of the ERA hybrid wing-body configuration:AIAA-2016-0266[R]. Reston,VA:AIAA, 2016.
[14] 强旭浩, 王占学, 刘增文, 等. 涡扇发动机短舱设计方法研究[J]. 机械设计与制造, 2013(11):23-25, 28. QIANG X H, WANG Z X, LIU Z W, et al. Design method research of turbofan-engine nacelle[J]. Machinery Design and Manufacture, 2013(11):23-25, 28(in Chinese).
[15] 王修方. 涡扇发动机动力短舱的设计[J]. 民用飞机设计与研究, 1998(1):30-36. WANG X F. Turbofan engine dynamic nacelle design[J]. Journal of Civil Aircraft Design and Research, 1998(1):30-36(in Chinese).
[16] MIAO Z S. Aircraft engine performance and integration in a flying wing aircraft conceptual design[D]. Cranfield:Cranfield University, 2012:55-62.
[17] UENISHI K, PEARSON M S, LEHNIG T R, et al. CFD-based 3D turbofan nacelle design system:AIAA-1990-3081[R]. Reston, VA:AIAA, 1990.
[18] WILHELM R. An inverse design method for designing isolated and wing-mounted engine nacelles:AIAA-2002-0104[R]. Reston, VA:AIAA, 2002.
[19] MORITZ A, DIETER B. Aerodynamic design optimization of nacelle and intake:GT2013-94857[R]. New York:ASME, 2013:1-8.
[20] FANG X M, ZHANG Y F, CHEN H X. Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm:AIAA-2016-3833[R]. Reston, VA:AIAA, 2016.
[21] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[22] RIEDEL H, RONZHEIMER A, SITZMANN M. Analysis of the static pressure distribution on a laminar flow nacelle based on Euler calculations and flight measurements[J]. Aerospace Science and Technology, 1998, 2(2):129-143.
[23] MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design[M]. 2nd ed. Reston, VA:AIAA, 2002:569-588.
[24] KULFAN B M. A universal parametric geometry representation method-"CST":AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[25] KULFAN B M. Recent extensions and applications of the "CST" universal parametric geometry representation method:AIAA-2007-7709[R]. Reston, VA:AIAA, AIAA, 2007.
[26] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4):625-633. GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese).
[27] LEE C H, MAVRIS D N. Bayesian collaborative sampling for aero-propulsion design of an engine and nacelle:AIAA-2012-3997[R]. Reston, VA:AIAA, 2012.
[28] 刘李涛, 杨永, 李喜乐. 外吹式动力吹气襟翼N-S方程数值分析[J]. 航空计算技术, 2008, 38(3):61-64. LIU L T, YANG Y, LI X L. Numerical analysis of high-lift system with externally blown flap using N-S equations[J]. Aeronautical Computing Technique, 2008, 38(3):61-64(in Chinese).
[29] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[30] HIROSE N, ASAI K, IKAWA K. Transonic 3-D Euler analysis of flows around fan-jet engine and TPS (Turbine Powered Simulator):NAL-TR-1045[R]. Tokyo:National Aerospace Laboratory of Japan, 1989.
[31] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2015, 42(2):413-420.
[32] 张彬乾,罗烈,陈真利, 等. 飞翼布局隐身翼型优化设计研究[J].航空学报, 2014, 35(4):957-967. ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil optimization design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese).
[33] YU G, LI D, SHU Y, et al. The engine position effect on SWB airplane aerodynamic performance[C]//2018 Asia-Pacific International Symposium on Aerospace Technology, 2018.
[34] 刘凯礼, 孙一峰,钟园, 等. 民用飞机进气道的侧风畸变研究[J].航空动力学报, 2015, 30(2):289-296. LIU K L, SUN Y F, ZHONG Y, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2):289-296(in Chinese).