翼身融合民机技术专栏

翼身融合背撑发动机布局的动力短舱设计

  • 顾文婷 ,
  • 赵振山 ,
  • 周翰玮 ,
  • 冯剑 ,
  • 谭兆光 ,
  • 李栋
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业 空气动力研究院 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034;
    3. 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210

收稿日期: 2019-03-25

  修回日期: 2019-04-04

  网络出版日期: 2019-05-22

Powered-on nacelle design on blended-wing-body configuration with podded engines

  • GU Wenting ,
  • ZHAO Zhenshan ,
  • ZHOU Hanwei ,
  • FENG Jian ,
  • TAN Zhaoguang ,
  • LI Dong
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. High Speed and High Reynolds Number Aerodynamics Key Laboratory, AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    3. Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd., Shanghai 201210, China

Received date: 2019-03-25

  Revised date: 2019-04-04

  Online published: 2019-05-22

摘要

为了解决翼身融合(BWB)背撑发动机布局的飞机-发动机流动干扰问题,依据BWB流场特征,提出背撑式动力短舱设计思想:采用轴对称短舱,结合可以减小短舱外部流动对机体影响的外罩型面和满足进气效率要求的进气道型面设计。基于本文构建的动力短舱参数化建模方法和多点优化设计方法,开展兼顾内外流的短舱综合优化设计研究,最后对设计方案安装状态流场进行分析。结果表明:提出的设计方法可以给出具有不同内外流气动特性、满足BWB背撑式发动机动力短舱多点设计要求的设计方案,巡航状态短舱外表面和全推力状态进气道最大马赫数最大可减小8.35%和11.81%,优化结果在最大推力和侧风起飞状态也具有良好的进气道性能;动力短舱安装状态消除了高速巡航飞行状态下短舱和机体之间的强激波和后体流动分离,低速大迎角状态机体外流能够为发动机提供均匀稳定的进气,进气道总压恢复系数满足设计要求。

本文引用格式

顾文婷 , 赵振山 , 周翰玮 , 冯剑 , 谭兆光 , 李栋 . 翼身融合背撑发动机布局的动力短舱设计[J]. 航空学报, 2019 , 40(9) : 623047 -623047 . DOI: 10.7527/S1000-6893.2019.23047

Abstract

To solve the problem of aircraft-engine flow interference of Blend-Wing-Body (BWB) configuration with podded engines, this paper presents the design principles for podded nacelles based on the BWB flow characteristics. The axisymmetric nacelles should be taken into account together with the fan cowl profile which could reduce the influence of nacelle external flow on the airframe and the intake profile which meets the requirements of intake efficiency. Based on the parameterization method and multipoint optimization design method for powered nacelles established in this paper, the nacelles optimization considering both internal and external flow is carried out. Finally, the flowfield of the installed engine nacelle is analyzed. The results show that the design method proposed in this paper can provide the design options with different internal and external aerodynamic characteristics and meet the multipoint design requirements of the power nacelle for BWB with podded engines. The peak Mach number at cruise and full thrust condition can be reduced by 8.35% and 11.81% respectively to the largest extent. The optimization results also have good intake performance at maximum thrust and crosswind takeoff condition. For the installed nacelle configuration, the strong shock wave between engine and airframe and the rear body separation at high speed cruise condition is eliminated, and the airframe external flow provides uniform and stable intake for the engine at low speed condition with high angle of attack, meanwhile, the intake total pressure recovery coefficient meets the design requirements.

参考文献

[1] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
[2] PAULUS D, SALMON T, MOHR B, et al. Configuration selection for a 450 passenger ultra-efficient 2020 aircraft[C]//4th European Conference for Aerospace Sciences (EUCASS) Proceedings, 2011:601-618.
[3] GRAHAMN W R, HALL C A, MORALES M V. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34(1):36-51.
[4] SHAW R J, PEDDIE C L. Overview of the Ultra Efficient Engine Technology (UEET) Program:NASA CP-2003-212458[R]. Washington, D.C.:NASA, 2003.
[5] SUDER K L. Overview of the NASA environmentally responsible aviation project's propulsion technology portfolio:AIAA-2012-4038[R]. Reston, VA:AIAA, 2012.
[6] HOOKER J R, WICK A, ZEUNE C, et al. Over wing nacelle installations for improved energy efficiency:AIAA-2013-2920[R]. Reston, VA:AIAA, 2013.
[7] HOOKER J R, WICK A. Design of the hybrid wing body for fuel efficient air mobility operations:AIAA-2014-1285[R]. Reston, VA:AIAA, 2014.
[8] TONG M T, JONES S M, HALLER W J, et al. Engine conceptual design studies for a hybrid wing body aircraft:NASA/TM-2009-215680[R]. Washington, D.C.:NASA, 2009.
[9] RODRIGUEZ D L. Multidisciplinary optimization method for designing boundary-layer-ingesting inlets[J]. Journal of Aircraft, 2009, 46(3):883-894.
[10] FERRAR A M, O'BRIEN W F. Progress in boundary layer ingesting embedded engine research:AIAA-2012-4283[R]. Reston,VA:AIAA, 2012.
[11] GISSEN A N, VUKASINOVIC B, MCMILLAN M L, et al. Distortion management in a boundary layer ingestion inlet diffuser using hybrid flow control[J]. Journal of Propulsion and Power, 2013, 30(3):834-844.
[12] FLAMM J D, JAMES K D, BONET J T. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) integration for Hybrid Wing Body (HWB):AIAA-2016-0007[R]. Reston,VA:AIAA, 2016.
[13] DEERE K A, LUCKRING J M, MCMILLIN S N, et al. CFD predictions for transonic performance of the ERA hybrid wing-body configuration:AIAA-2016-0266[R]. Reston,VA:AIAA, 2016.
[14] 强旭浩, 王占学, 刘增文, 等. 涡扇发动机短舱设计方法研究[J]. 机械设计与制造, 2013(11):23-25, 28. QIANG X H, WANG Z X, LIU Z W, et al. Design method research of turbofan-engine nacelle[J]. Machinery Design and Manufacture, 2013(11):23-25, 28(in Chinese).
[15] 王修方. 涡扇发动机动力短舱的设计[J]. 民用飞机设计与研究, 1998(1):30-36. WANG X F. Turbofan engine dynamic nacelle design[J]. Journal of Civil Aircraft Design and Research, 1998(1):30-36(in Chinese).
[16] MIAO Z S. Aircraft engine performance and integration in a flying wing aircraft conceptual design[D]. Cranfield:Cranfield University, 2012:55-62.
[17] UENISHI K, PEARSON M S, LEHNIG T R, et al. CFD-based 3D turbofan nacelle design system:AIAA-1990-3081[R]. Reston, VA:AIAA, 1990.
[18] WILHELM R. An inverse design method for designing isolated and wing-mounted engine nacelles:AIAA-2002-0104[R]. Reston, VA:AIAA, 2002.
[19] MORITZ A, DIETER B. Aerodynamic design optimization of nacelle and intake:GT2013-94857[R]. New York:ASME, 2013:1-8.
[20] FANG X M, ZHANG Y F, CHEN H X. Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm:AIAA-2016-3833[R]. Reston, VA:AIAA, 2016.
[21] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12.
[22] RIEDEL H, RONZHEIMER A, SITZMANN M. Analysis of the static pressure distribution on a laminar flow nacelle based on Euler calculations and flight measurements[J]. Aerospace Science and Technology, 1998, 2(2):129-143.
[23] MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design[M]. 2nd ed. Reston, VA:AIAA, 2002:569-588.
[24] KULFAN B M. A universal parametric geometry representation method-"CST":AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[25] KULFAN B M. Recent extensions and applications of the "CST" universal parametric geometry representation method:AIAA-2007-7709[R]. Reston, VA:AIAA, AIAA, 2007.
[26] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4):625-633. GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese).
[27] LEE C H, MAVRIS D N. Bayesian collaborative sampling for aero-propulsion design of an engine and nacelle:AIAA-2012-3997[R]. Reston, VA:AIAA, 2012.
[28] 刘李涛, 杨永, 李喜乐. 外吹式动力吹气襟翼N-S方程数值分析[J]. 航空计算技术, 2008, 38(3):61-64. LIU L T, YANG Y, LI X L. Numerical analysis of high-lift system with externally blown flap using N-S equations[J]. Aeronautical Computing Technique, 2008, 38(3):61-64(in Chinese).
[29] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[30] HIROSE N, ASAI K, IKAWA K. Transonic 3-D Euler analysis of flows around fan-jet engine and TPS (Turbine Powered Simulator):NAL-TR-1045[R]. Tokyo:National Aerospace Laboratory of Japan, 1989.
[31] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2015, 42(2):413-420.
[32] 张彬乾,罗烈,陈真利, 等. 飞翼布局隐身翼型优化设计研究[J].航空学报, 2014, 35(4):957-967. ZHANG B Q, LUO L, CHEN Z L, et al. On stealth airfoil optimization design for flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese).
[33] YU G, LI D, SHU Y, et al. The engine position effect on SWB airplane aerodynamic performance[C]//2018 Asia-Pacific International Symposium on Aerospace Technology, 2018.
[34] 刘凯礼, 孙一峰,钟园, 等. 民用飞机进气道的侧风畸变研究[J].航空动力学报, 2015, 30(2):289-296. LIU K L, SUN Y F, ZHONG Y, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2):289-296(in Chinese).
文章导航

/