电子电气工程与控制

弹性高超声速滑翔飞行器的状态/参数联合估计

  • 陈尔康 ,
  • 荆武兴 ,
  • 高长生
展开
  • 哈尔滨工业大学 航天学院, 哈尔滨 150001

收稿日期: 2019-03-11

  修回日期: 2019-04-08

  网络出版日期: 2019-05-10

State/parameter joint estimation for flexible hypersonic glide vehicles

  • CHEN Erkang ,
  • JING Wuxing ,
  • GAO Changsheng
Expand
  • College of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Received date: 2019-03-11

  Revised date: 2019-04-08

  Online published: 2019-05-10

摘要

弹性高超声速滑翔飞行器具有强非线性、强不确定性和刚体/弹性耦合的特点,对其状态和参数进行估计十分必要。为解决这一问题,提出了一种传感器布置策略和一种利用正交三角(QR)分解更新到达代价的滚动时域估计算法(MHE-QR)。首先,建立了考虑弹性的传感器观测模型并分析了传感器位置对可观性的影响,并在此基础上提出了一种反映系统可观性的性能指标。传感器布置策略以此性能指标为目标函数,将传感器布置问题转化为约束非线性优化问题并求解,即可得到最优传感器布置方案。然后提出了MHE-QR算法。在滚动时域估计的框架下,该算法利用前向动态规划原理将到达代价的计算转化为最小二乘问题,并给出了基于QR分解的到达代价更新算法。仿真结果表明该传感器布置策略和MHE-QR算法能够有效提高估计精度、收敛速度和计算速度。此外,MHE-QR算法具有实时应用的潜力。

本文引用格式

陈尔康 , 荆武兴 , 高长生 . 弹性高超声速滑翔飞行器的状态/参数联合估计[J]. 航空学报, 2019 , 40(8) : 322992 -322992 . DOI: 10.7527/S1000-6893.2019.22992

Abstract

It is essentially to jointly estimate the state and parameter of flexible hypersonic vehicles due to its nonlinearity, uncertainty, and rigid/elastic coupling. To solve these problems, a sensor placement strategy and a Moving Horizon Estimation with arrival cost updated by QR decomposition (MHE-QR) are proposed. First, the influence of sensor placement on observability is analyzed, based on which a performance index is proposed. Using this performance index, the sensor placement problem is transformed into a constrained optimization problem. The sensor placement scheme is obtained by solving this optimization problem. Utilizing the dynamic programming principle, the MHE-QR algorithm transforms the arrival cost update problem into a least square problem that is solved by QR decomposition in the framework of MHE. The Monte Carlo simulation results demonstrate that the sensor placement strategy and the MHE-QR algorithm can effectively improve the estimation accuracy, convergence speed, and computation rate. Additionally, the CPU time validate the real-time applicability of MHE-QR.

参考文献

[1] 吴志刚, 楚龙飞,杨超,等. 推力耦合的高超声速飞行器气动伺服弹性研究[J]. 航空学报, 2012, 33(8):1355-1363. WU Z G, CHU L F, YANG C, et al. Study on aeroservoelasticity of hypersonic vehicles with thrust coupling[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1355-1363(in Chinese).
[2] SUDALAGUNTA P R, SULTAN C, KAPANIA R K, et al. Aeroelastic control-oriented modeling of an airbreathing hypersonic vehicle[J]. Journal of Guidance, Control and Dynamics, 2018, 41(5):1136-1149.
[3] 华如豪, 叶正寅. 吸气式高超声速飞行器多学科动力学建模[J]. 航空学报, 2015, 36(1):346-356. HUA R H, YE Z Y. Multidisciplinary dynamics modeling and analysis of a generic hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):346-356(in Chinese).
[4] 郁嘉, 杨鹏飞,严德. 高超声速飞行器模型不确定性影响分析[J]. 航空学报, 2015, 36(1):192-200. YU J, YANG P F, YAN D. Influence analysis of hypersonic flight vehicle model uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):192-200(in Chinese).
[5] WASZAK M, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 52(6):563-571.
[6] POURTAKDOUST S H, ASSADIAN N. Investigation of thrust effect on the vibrational characteristics of flexible guided missiles[J]. Journal of Sound and Vibration, 2004, 272(2):287-299.
[7] ZONG Q, YOU M, ZENG F L, et al. Aeroservoelastic modeling and analysis of a six-DOF hypersonic flight vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(7):1240-1251.
[8] 王晓明, 周文雅,寻广彬,等. 带有振动抑制的压电结构动态形状主动控制[J]. 宇航学报, 2017, 38(2):185-191. WANG X M, ZHOU W Y, XUN G B, et al. Dynamic shape control of piezoelectric structures with vibration suppression[J]. Journal of Astronautics, 2017, 38(2):185-191(in Chinese).
[9] BANERJEE S, WANG Z, BAUR B, et al. L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider[J]. Journal of Guidance, Control and Dynamics, 2016, 39(2):275-290.
[10] KRAUS T, FERRAU H J, KAYACAN E, et al. Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles[J]. Computers and Electronics in Agriculture, 2013, 98:25-33.
[11] 李静, 左斌,段洣毅,等. 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012, 33(2):220-233. LI J, ZUO B, DUAN M Y, et al. Adaptive Terminal sliding mode control for air-breathing hypersonic vehicles under control input constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):220-233(in Chinese).
[12] XU T, RONG J, XIANG D, et al. Dynamic modeling and stability analysis of a flexible spinning missile under thrust[J]. International Journal of Mechanical Sciences, 2016, 119:144-154.
[13] 杜立夫, 黄万伟,刘晓东,等. 考虑特征模型的高超声速飞行器全通道自适应控制[J]. 宇航学报, 2016, 37(6):711-719. DU L F, HUANG W W, LIU X D, et al. Whole-channel adaptive control for hypersonic vehicle considering characteristic model[J]. Journal of Astronautics, 2016, 37(6):711-719(in Chinese).
[14] 孟中杰, 闫杰. 高超声速弹性飞行器振动模态自适应抑制技术[J]. 宇航学报, 2011, 32(10):2164-2168. MENG Z J, YAN J. Adaptive modal suppression for hypersonic aeroelastic vehicle[J]. Journal of Astronautics, 2011, 32(10):2164-2168(in Chinese).
[15] ABDOLLAHPOURI M, TAKACS G, ROHAL'-ILKIV B. Real-time moving horizon estimation for a vibrating active cantilever[J]. Mechanical Systems and Signal Processing, 2016, 86:144-154.
[16] LIU M, CHANG G. Numerically and statirtically stable Kalman filter for INS/GNSS integration[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(2):321-332.
[17] GAO W, YANG J, LIU J, et al. Moving horizon estimation for cooperative localization with communication delay[J]. The Journal of Navigation, 2015, 68:493-510.
[18] KUHL P, DIEHL M, KRAUS T, et al. A real-time algorithm for moving horizon state and parameter estimation[J]. Computers and Chemical Engineering, 2011, 35:71-83.
[19] 焦志强, 李卫华,王鹏. 基于量测补偿的多传感器分布式滚动时域估计[J]. 系统工程与电子技术, 2017, 39(5):984-990. JIAO Z Q, LI W H, WANG P. Distributed moving horizon estimation for multi-sensors system based on measurements compensation[J]. Systems Engineering and Electronics, 2017, 39(5):984-990(in Chinese).
[20] RAO C V, RAWLINGS J B, MAYNE D Q. Constrained state estimation for nonlinear discrete-time systems:Stability and moving horizon approximations[J]. IEEE Transactions on Automatic Control, 2003, 48(2):246-258.
[21] SUN L, CASTAGNO J D, HEDENGREN J D, et al. Parameter estimation for towed cable systems using moving horizon estimation[J]. IEEE Transactions on Aerospace and Electronics Systems, 2015, 51(2):1432-1446.
[22] JANKOVSKY P, SIGTHORSSON D O, SERRANI A, et al. Output feedback control and sensor placement for a hypersonic vehicle model[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, VA:AIAA, 2017.
[23] WEI Y Y, CHEN Y, DUAN G R, et al. Sensor placement strategy for a hypersonic vehicle with elastic effects[C]//28th Chinese Control and Decision Conference, 2016.
文章导航

/