面向航空液压系统消除压力脉动、提升系统可靠性和寿命的需求,设计了一种液压系统压力脉动消除器。基于流体网络理论建立了脉动消除器及实验系统的理论模型,并考虑安装方式和负载类型的不同,分析了脉动消除器在不同工况下的滤波效果。然后通过仿真方法验证了设计方案的可行性以及理论分析的准确性,仿真过程考虑了系统负载对脉动的影响。最后实验验证了脉动消除器的滤波效果。结果表明:设计的新型结构压力脉动消除器无运动部件、布局紧凑,与飞机液压系统中常用的液压柱塞泵使用匹配度高,是消除液压系统脉动的有效部件;在300~500 Hz的压力脉动频率范围内,研究设计的脉动消除器可以消除10 dB的压力脉动,能够满足飞机液压系统消除压力脉动的需求,在航空领域中具有广泛的应用前景。
Aiming at the requirement of eliminating the pressure pulsation and improving the reliability and the life of the aeronautical hydraulic system, a new type of pressure pulse filter for the hydraulic system is designed. Based on the fluid network theory, the theoretical models for the pulse filter and the experimental system are established. Considering the difference of installation mode and load type, the filtering effect of the pulse filter is analyzed. Then the feasibility of the structure and the accuracy of the theoretical analysis are verified through simulation. The fluent software is used in the simulation method, and the throttling load of the system is considered. Finally, the filtering effect of the pulse filter under different working conditions is verified by experiments. The results show that the developed pressure pulse filter has no moving part and compact layout, and has high compatibility with commonly used piston pump, and is one type of the available component to decrease the hydraulic pressure. Moreover, in the range of 300-500 Hz, the pulse filter can eliminate the pulsation of 10 dB in the experiment, meeting the requirement for aircraft hydraulic system. The pulse filter can be applied in aeronautical field in the future.
[1] 李玉琳. 液压元件与系统设计[M]. 北京:北京航空航天大学出版社, 1991:2-5. LI Y L. Hydraulic components and system design[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 1991:2-5(in Chinese).
[2] 那成烈. 低噪声轴向柱塞泵的配流方法及配流盘结构:CN1074019[P]. 1993-07-07. NA C L. Flow distribution method and valve plate structure of low noise axial piston pump:CN1074019[P]. 1993-07-07(in Chinese).
[3] 王川. 海洋工程管路减振降噪研究[D]. 青岛:中国海洋大学, 2015:15-18. WANG C. Research on vibration and noise reduction of ocean engineering pipelines[D]. Qingdao:Ocean University of China, 2015:15-18(in Chinese).
[4] 欧阳小平, 李磊, 方旭. 共振型液压脉动衰减器研究现状及展望[J]. 机械工程学报, 2015, 51(22):168-175. OUYANG X P, LI L, FANG X. Research status and prospects of resonant-type hydraulic pulsation attenuators[J]. Journal of Mechanical Engineering, 2015, 51(22):168-175(in Chinese).
[5] PAN M, JOHNSTON N, HILLIS A. Active control of pressure pulsation in a switched inertance hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers Part I:Journal of Systems & Control Engineering, 2013, 227(7):610-620.
[6] MAILLARD J P, LAGO T L, FULLER C R. Fluid wave actuator for the active control of hydraulic pulsations in piping systems[C]//17th International Modal Analysis Conference. Proceedings of SPIE-The International Society for Optical Engineering, 1999:1806-1812.
[7] 欧阳平超, 刘红梅, 焦宗夏. 基于旁路溢流原理的流体脉动主动控制[J]. 航空学报, 2007, 28(6):1302-1306. OUYANG P C, LIU H M, JIAO Z X. Active control of fluid pulsation based on bypass overflow principle[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1302-1306(in Chinese).
[8] SHAHIN S, NUDEHI G, SCOTT D. Modeling and experimental investigation of a Helmholtz resonator with a flexible plate[J]. Journal of Vibration and Acoustics, 2013, 135(4):151-156.
[9] 谢坡岸, 王强. 蓄能器对管路流体脉动消减作用的研究[J]. 噪声与振动控制, 2000(8):2-5. XIE P A, WANG Q. Study on attenuation of fluid-borne pulsation using accumulator[J]. Noise and Vibration Control, 2000(8):2-5(in Chinese).
[10] ORTWIG H. Experimental and analytical vibration analysis in fluid power systems[J]. International Journal of Solids and Structures, 2005, 42(21):5821-5830.
[11] 曾祥荣, 张建成. 共振型液压消声器的研究[J]. 机械工程学报, 1990, 26(5):90-95. ZENG X R, ZHANG J C. A study on resonance type hydraulic muffler[J]. Journal of Mechanical Engineering, 1990, 26(5):90-95(in Chinese).
[12] 王岩, 郝凤乾, 郭生荣, 等. 扩张室压力脉动衰减器的研究现状及发展趋势[J]. 机床与液压, 2015, 43(15):180-186. WANG Y, HAO F Q, GUO S R, et al. Research status and development trend of the expansion chamber pressure pulsation attenuator[J]. Machine Tool & Hydraulics, 2015, 43(15):180-186(in Chinese).
[13] 贺尚红, 熊宇维, 王文. 基于耳蜗基底膜仿生原理的液压脉动衰减器滤波特性研究[J]. 机械工程学报, 2016, 52(4):171-177. HE S H, XIONG Y W, WANG W. Research on filtering characteristics of hydraulic pulsation attenuator based on bionic principle of basilar membrane of cochlea[J]. Journal of Mechanical Engineering, 2016, 52(4):171-177(in Chinese).
[14] 贺尚红, 叶阿敏, 王文. 复合式压力脉动衰减器衰减特性[J]. 长沙理工大学学报, 2015, 12(3):91-98. HE S H, YE A M, WANG W. Characteristics of compound pressure pulsation attenuator[J]. Journal of Changsha University of Science and Technology, 2015, 12(3):91-98(in Chinese).
[15] KENNETH A M, ELLIOTT R G, KENNETH A C. Linear multimodal model for a pressurized gas bladder style hydraulic noise suppressor[J]. International Journal of Fluid Power, 2013, 14(2):16-25.
[16] GUO S R, CHEN J, LU Y L, et al. Hydraulic piston pump in civil aircraft:current status, future directions and critical technologies[J]. Chinese Journal of Aeronautics,2020,33(1):https://doi.org/10.1016/j.cja.2019.01.013.
[17] GUAN C B, JIAO Z X. Modeling and optimal design of 3 degrees of freedom Helmholtz resonator in hydraulic system[J]. Chinese Journal of Aeronautics, 2012, 25(5):776-783.
[18] GRUBER E R, CUNEFARE K A, DANZL P W,et al. Optimization of single and dual suppressors under varying load and pressure conditions[J]. International Journal of Fluid Power, 2013, 14(3):7-34.
[19] 罗志昌. 流体网络理论[M]. 北京:机械工业出版社, 1988:35-39. LUO Z C. Fluid network theory[M]. Beijing:China Machine Press, 1988:35-39(in Chinese).
[20] 章寅. 液压系统压力脉动衰减器特性研究[D]. 杭州:浙江大学, 2011:10-17. ZHANG Y. The performance of the pressure pulsation attenuator in hydraulic systems[D]. Hangzhou:Zhejiang University, 2011:10-17(in Chinese).