[1] 张振中, 鲁艺, 张辉明, 等. 地空导弹拦截模型下无人机突防方向的研究[J]. 计算机仿真, 2016, 33(9):113-131. ZHANG Z Z, LU Y, ZHANG H M, et al. Study on penetration direction of UAV based on the surface to air missile interception model[J]. Computer Simulation, 2016, 33(9):113-131(in Chinese).
[2] 李枭扬, 周德云, 冯琦, 等. 基于遗传规划的空空导弹攻击区拟合[J]. 弹箭与制导学报, 2015, 35(3):16-22. LI X Y, ZHOU D Y, FENG Q, et al. Air-to-air missile launch envelops fitting based on genetic programming[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3):16-22(in Chinese).
[3] 张振兴, 杨任农, 房育, 等. 基于改进BP神经网络的导弹攻击区计算[J]. 飞行力学, 2018, 36(2):48-52. ZHANG Z X, YANG R N, FANG Y, et al. Calculation of missile launch envelopes based on dynamic improved structured BP neural network[J]. Flight Dynamics, 2018, 36(2):48-52(in Chinese).
[4] 姚裕盛, 徐开俊. 基于BP神经网络的飞行训练品质评估[J]. 航空学报, 2017, 38(S1):721513. YAO Y S, XU K J. Quality assessment of flight training based on BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721513(in Chinese).
[5] 周旺旺, 姚佩阳,张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018,39(11):322468. ZHOU W W, YAO P Y, ZHANG J Y, et al. Combat intention recognition for aerial targets based on deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):322468(in Chinese).
[6] 王正魁, 靳旭红,朱志斌, 等. 超声速湍流密度脉动预测的神经网络方法[J]. 航空学报,2018,39(10):122244. WANG Z K, JIN X H, ZHU Z B, et al. Neural network method for predicting density fluctuations in supersonic turbulence[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):122244(in Chinese).
[7] 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9):1953-1959. LI J W, QU C W, PENG S J, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9):1953-1959(in Chinese).
[8] 张天骐, 张婷, 熊梅, 等. 基于神经网络的低信噪比CBOC信号组合码序列盲估计[J]. 系统工程与电子技术, 2018, 40(12):2824-2832. ZHANG T Q, ZHANG T, XIONG M, et al. Neural network approach to blind-estimation of combined code sequence in lower SNR CBOC signals[J]. Systems Engineering and Electronics, 2018, 40(12):2824-2832(in Chinese).
[9] 周兴旺, 从福仲, 庞世春. 基于BN-and-BP神经网络融合的陆空联合作战效能评估[J]. 火力与指挥控制, 2018, 43(4):3-8. ZHOU X W, CONG F Z, PANG S C, et al. Effectiveness evaluation of air-ground joint operations based on the BN-and-BP neural network[J]. Fire Control & Command Control, 2018, 43(4):3-8(in Chinese).
[10] HINTON G E, SALAKHUTDINOV R R. Reducing the di mensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[11] 娄寿春. 地空导弹射击指挥控制模型[M]. 北京:国防工业出版社, 2009. LOU S C. Shooting command and control model of Ground-to-air missile[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[12] 谢世华, 肖毅于. 基于多项式拟合的GPS周跳探测研究[J]. 资源信息与工程, 2018, 33(5):135-138. XIE S H, XIAO Y Y. Research on GPS cycle slip detection based on polynomial fitting[J]. Resource Information and Engineering, 2018, 33(5):135-138(in Chinese).
[13] 李飞, 高晓光, 万开方. 基于动态Gibbs采样的RBM训练算法研究[J]. 自动化学报, 2016, 42(6):931-942. LI F, GAO X G, WAN K F. Research on RBM training algorithm with dynamic Gibbs sampling[J]. Acta Automatica Sinica, 2016, 42(6):931-942(in Chinese).
[14] GROSSBERG S, Nonlinear neural networks:Principles, mechanisms, and architectures[J]. Neural Networks, 1988, (1):15-57
[15] SERGEY I, CHRISTIAN S. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//32nd International Conference on Machine Learning, 2015:448-456.
[16] DUMITRU E. Understanding deep architectures and the effect of unsupervised pre-training[D]. Quebec:University of Montréal, 2010.
[17] JAITLY N, NGUYEN P, SENIOR A, et al. Application of pretrained deep neural networks to large vocabulary conversational speech recognition[C]//Interspeech, 2012:2578-2581.
[18] POON H,DOMINGOS P. Sum-product networks:A new deep architecture[C]//2011 IEEE International Conference on Computer Vision Workshops. Piscataway, NJ:IEEE Press, 2011:689-690.
[19] DENG L. Design and learning of output representations for speech recognition[J]. Neural Information Processing Systems (NIPS) Workshop on Learning Output Representations, 2013, 35(2):156-162.
[20] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//ICML 2008 Proceedings of the 25th International Conference on Machine Learning, 2008:1096-1103.
[21] SCHAUL T, ZHANG S, LECUN Y. No more pesky learning rates[J/OL]. ArXiv (2013-02-18)[2018-12-18]. https://arxiv.org/abs/1206.1106.
[22] LAN G. An optimal method for stochastic composite optimization[J]. Mathematical Programming, 2012, 133(1-2):365-397.
[23] YOSHUA B,OLIVIER D. On the expressive power of deep architectures[C]//Processing of the 14th International Conference on Discovery Science. Berlin:Springer-Verlag, 2011:18-36.
[24] YOSHUA B, PASCAL L, DAN P, et al. Greedy layer-wise training of deep networks[C]//Processing of the 12th Annual Conference on Neural Information Processing System, 2006:153-160.
[25] GLOROT X,YOSHUA B. Understanding the difficulty of training deep feedforward neural networks[C]//Processing of the 13th International Conference on Artifical Intelligence and Statistics, 2010:249-256.
[26] SALAKHUTDINOV R. Learning deep generative models[D]. Toronto:University of Toronto, 2009.