Arc-heated wind tunnel, as an important hypersonic test facility, is indispensable for examining and developing thermal protection materials and structures. However, the flow is always contaminated by copper species generated from the surface molten or boiled electrodes, undermining the accuracy of the experiment. In this work, to quantitatively study the copper contamination and the electrode ablation, the Tunable Diode Laser Absorption Spectroscopy (TDLAS) is employed by measuring the 809.25 nm transition spectrum line of Cu in real-time in the 20 MW segmented arc heater. Based on acquisition of the number densities of lower state, the average number densities of copper species (including atoms and ions) in the inner flow of arc heater with the different power of 7.3, 8.7, 10.0 and 11.7 MW are measured, deriving results as 10.6×1013, 11.2×1013, 11.7×1013, and 16.4×1013 cm-3 respectively. In the meantime, the average electrode ablation rate (defined by mass loss per unit of charge crossing the electrode surface) is obtained as about 1.65×10-5 g/C. What's more, the monitoring TDLAS signal showed violent fluctuation before the steady flow is established and showed sudden sharp rise when the power of the arc heater changed, demonstrating that the fluctuation of arc spots could greatly aggravate the electrode ablation.
[1] LU F K, MARREN D E. Advanced hypersonic test facilities[M]. Reston, VA:AIAA, 2002.
[2] VOLAND R T, ROCK K E, HUENER L D, et al. Hyper-X engine design and ground test program[C]//8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA,1998:1532.
[3] SALERNO L J, WHITE S M, HELVENSTEIJN B P M. Characterization of an integral thermal protection and cryogenic insulation material for advanced space transportation vehicles[R]. Warrendale, PA:SAE, 2000.
[4] WEBB B T, SHEELEY J M. Investigation of the effects of shear on arc-electrode erosion using a modified arc-electrode mass loss model[C]//55th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2017:0217.
[5] ZHONG L, WANG X, WU Y, et al. Influence of copper contamination on equilibrium compositions, thermodynamic properties, transport coefficients, and combined diffusion coefficients of high-temperature SF6 gas[C]//20153rd International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Piscataway, NJ:IEEE Press, 2015:321-324.
[6] ZHANG J L, YAN J D, FANG M T C. Electrode evaporation and its effects on thermal arc behavior[J]. IEEE Transactions on Plasma Science, 2004, 32(3):1352-1361.
[7] TANAKA Y. Influence of copper vapor contamination on dielectric properties of hot air at 300-3500 K in atmospheric pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(3):504-512.
[8] 张松贺, 杨远剑,王茂刚,等. 电弧风洞热/透波联合试验技术研究及应用[J]. 空气动力学学报, 2017, 35(1):141-145. ZHANG S H, YANG Y J, WANG M G, et al. Studies and applications of thermal/wave-transmission test technique in arc-heated wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(1):141-145(in Chinese).
[9] 隆永胜, 袁竭,赵顺洪,等. 电弧加热设备开展超燃冲压发动机试验概述[J]. 飞航导弹, 2016(2):72-79. LONG Y S, YUAN J, ZHAO S H, et al. Overview of scramjet test by arc heating equipments[J]. Winged Missiles Journal, 2016(2):72-79(in Chinese).
[10] FELDERMAN E J. Issues relating to the use of arc heaters for direct-connect scramjet testing[R]. Tennessee:AEDC, 1999.
[11] MACDERMOTT W, HORN D, FISHER C. Flow contamination and flow quality in arc heaters used for hypersonic testing[C]//17th Aerospace Ground Testing Conference.Reston, VA:AIAA, 1992.
[12] AKBAR S, ETEMADI K. Impact of copper vapor contamination on argon arcs[J]. Plasma chemistry and plasma processing, 1997, 17(2):251-262.
[13] KIM S. Development of tunable diode laser absorption sensors for a large-scale arc-heated plasma wind tunnel[D]. Palo Alto, LA:Stanford University, 2004.
[14] 李萌, 郭金家,叶旺全,等. 基于微型多次反射腔的TDLAS二氧化碳测量系统[J]. 光谱学与光谱分析, 2018, 38(3):697-701. LI M, GUO J J, YE W Q, et al. Study on TDLAS system with a miniature multi-pass cavity for CO2 measurements[J]. Spectroscopy and Spectral Analysis, 2018, 38(3):697-701(in Chinese).
[15] CHEN W, WU Y, LUO Y. Broadening-independent demodulation for wavelength modulation spectroscopy based on even-order harmonics[J]. Spectroscopy Letters, 2018, 51(1):61-66.
[16] NATIONS M, CHANG L S, JEFFRIES J B, et al. Characterization of a large-scale arcjet facility using tunable diode laser absorption spectroscopy[J]. AIAA Journal, 2017:3757-3766.
[17] NATIONS M M, CHANG L S, JEFFRIES J B, et al. Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy[C]//44th AIAA Plasmadynamics and Lasers Conference. Reston, VA:AIAA,2013.
[18] MATSUI M, KOMURASAKI K, ARAKAWA Y. Laser diagnostics of atomic oxygen in arc-heater plumes[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2002.
[19] MATSUI M, HERDRICH G, TAKAYANAGI H, et al. Laser diagnostics of inductively heated oxygen, nitrogen and air flows[C]//39th AIAA Thermophysics Conference. Reston, VA:AIAA, 2007.
[20] MATSUI M, OGAWA S, KOMURASAKI K, et al. Translational temperature measurement of arc-heater plumes by a laser absorption spectroscopy:AIAA-2003-058[R]. Reston, VA:AIAA, 2003.
[21] 欧东斌, 陈连忠,董永晖,等. 电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3):62-67. OU D B, CHEN L Z, DONG Y H, et al. Measurement of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanic, 2015, 29(3):62-67(in Chinese).
[22] 曾徽, 陈连忠,林鑫,等. 电弧加热器高温流场激光吸收光谱诊断[J]. 实验流体力学, 2017, 31(4):28-33. ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectroscopy diagnostics in the arc-heater of an arcjet facility[J]. Journal of Experiments in Fluid Mechanic, 2017, 31(4):28-33(in Chinese).
[23] SWINEHART D F. The beer-lambert law[J]. Journal of Chemical Education, 1962, 39(7):333.
[24] 贺健, 张淳民,张庆国. 佛克脱光谱线型干涉图的理论及其应用研究[J]. 光谱学与光谱分析, 2007, 27(3):423-426. HE J, ZHANG C M, ZHANG Q G. Research on theory and application of the interferogram of voigt profile[J]. Spectroscopy and Spectral Analysis, 2007, 27(3):423-426(in Chinese).
[25] SANSONETTI J E, MARTIN W C. Handbook of basic atomic spectroscopic data[J]. Journal of Physical and Chemical Reference Data, 2005, 34(4):1559-2259.
[26] MATSUI M. Application of laser absorption spectroscopy to high enthalpy flow diagnostics[D]. Tokyo:The University of Tokyo, 2005.
[27] LINDGR A, CURTIS L J, MARTINSON I, et al. Semi-empirical oscillator strengths for the Cu I isoelectronic sequence[J]. Physica Scripta, 1980, 21(1):47.
[28] DEMTRODER W. 激光光谱学(第一卷):基础理论[M]. 姬杨,译. 北京:科学出版社, 2015:28-35. DEMTRODER W. Laser spectroscopy.Vol.1:Basic principles[M]. JI Y, translated. Beijing:Science Press, 2015:28-35(in Chinese).
[29] NIST. Atomic Spectra Database[EB/OL].(2018-12-01)[2018-12-10].https://www.nist.gov/pml/atomic-spectra-database.
[30] PARK C, RAICHE G A, DRIVER D M, et al. Comparison of enthalpy determination methods for an arc-jet facility[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(4):672-679.
[31] BAUM G M, JORGENSEN L H. Charts for equilibrium flow properties of air in hypervelocity nozzles:NASA TN D-1333[R]. Washington, D.C.:NASA, 1962.