综述

三角翼DBD等离子体流动控制研究进展

  • 牛中国 ,
  • 赵光银 ,
  • 梁华 ,
  • 柳平
展开
  • 1. 空军工程大学 航空工程学院 等离子体动力学重点实验室, 西安 710038;
    2. 重庆交通大学 航空学院, 重庆 400074

收稿日期: 2018-04-16

  修回日期: 2018-05-04

  网络出版日期: 2019-03-28

基金资助

国家自然科学基金(11802341)

A review of vortical flow control over delta wings using DBD plasma actuation

  • NIU Zhongguo ,
  • ZHAO Guangyin ,
  • LIANG Hua ,
  • LIU Ping
Expand
  • 1. Key Laboratory of Plasma Dynamics, Aeronautical Engineering College, Air Force Engineering University, Xi'an 710038, China;
    2. School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, China

Received date: 2018-04-16

  Revised date: 2018-05-04

  Online published: 2019-03-28

Supported by

National Natural Science Foundation of China (11802341)

摘要

现代战机采用较多的三角翼,在大迎角绕流时存在前缘涡破裂等气动问题。作为新型主动流动控制技术,等离子体激励频带宽、响应快、结构简单、便于闭环控制,在解决三角翼气动问题上具有潜力。回顾了介质阻挡放电(DBD)等离子体气动激励的基本原理,及其用于三角翼前缘涡控制的研究进展。从来流条件、几何构型、激励参数等方面分析了DBD等离子体激励对流动控制效果的影响规律;结合不同激励频率下流场演化特性,分析了流动控制机理。最后,从理论研究和工程应用的角度,对三角翼前缘涡控制的发展进行总结展望。

本文引用格式

牛中国 , 赵光银 , 梁华 , 柳平 . 三角翼DBD等离子体流动控制研究进展[J]. 航空学报, 2019 , 40(3) : 22201 -022201 . DOI: 10.7527/S1000-6893.2019.22201

Abstract

Delta wings, being widely used in modern fighters, face aerodynamic problems such as vortex breakdown at large angles of attack. As a new type of active flow control technique, plasma aerodynamic actuation shows significant potential in the control of vortex flows of delta wings because of its fast response, simple structure, wide frequency band and convenience for closed loop control. In this paper, the principles of Dielectric Barrier Discharge (DBD) plasma aerodynamic actuation and its applications in the control of leading-edge vortices over delta wings are reviewed. The effect of DBD plasma actuation on flow control is analyzed in terms of the incoming flow condition, the geometry of experimental model and actuation parameters. Combining with the evolution characteristics of flow field at different actuation frequencies, the mechanism of flow control is analyzed. Finally, the future theoretical research and engineering application of delta wing vortex control are expounded.

参考文献

[1] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146.
[2] GURSUL I, GORDNIER R, VISBAL M. Unsteady aerodynamics of nonslender delta wings[J]. Progress in Aerospace Sciences, 2005, 41(7):515-557.
[3] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[4] KWAK D Y, NELSON R C. Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators:AIAA-2010-4837[R]. Reston, VA:AIAA, 2010.
[5] EARNSHAW P B, LAWFORD J A. Low-speed wind-tunnel experiments on a series of sharp-edged delta wings:R&M 3424[R]. 1964.
[6] LOWSON M V. Some experiments with vortex breakdown[J]. The Aeronautical Journal, 1964, 68(641):343-346.
[7] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Science, 2003, 39(2-3):185-248.
[8] 张鑫, 黄勇, 王勋年, 等. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6):1733-1742. ZHANG X, HUANG Y, WANG X N, et al. Flow control on a supercritical wing using dielectric barrier discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1733-1742(in Chinese).
[9] WANG J, LI Y H, XING F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7):073307.
[10] 杨瑞, 罗振兵, 夏智勋, 等. 高超声速导弹等离子体合成射流控制数值研究[J]. 航空学报, 2016, 37(6):1722-1732. YANG R, LUO Z B, XIA Z X, et al. Numerical study of plasma synthetic jet control on hypersonic missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732(in Chinese).
[11] 吴云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[12] CHE X K, NIE W S, ZHOU P H, et al. Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma[J]. Acta Physica Sinica, 2013, 62(22):224702.
[13] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge:AIAA-2008-1367[R]. Reston, VA:AIAA, 2008.
[14] LITTLE J C. High-lift airfoil separation control with dielectric barrier discharge plasma actuators[D]. Columbus, OH:The Ohio State University, 2010:73.
[15] 赵光银, 梁华, 吴云, 等. 不同时间尺度等离子体气动激励特性的测试诊断[J]. 空军工程大学学报(自然科学版), 2011, 12(5):20-24. ZHAO G Y, LIANG H, WU Y, et al. Diagnosis investigations of plasma aerodynamic actuation characteristics of different time scales[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(5):20-24(in Chinese).
[16] 赵光银. 翼型/三角翼等离子体冲击流动控制机理研究[D]. 西安:空军工程大学, 2015:121-135. ZHAO G Y. Study on flow control mechanism of airfoil/delta wing using plasma shockwave actuation[D]. Xi'an:Air Force Engineering University, 2015:121-135(in Chinese).
[17] 韩孟虎. 飞翼与增升装置等离子体流动控制研究[D]. 西安:空军工程大学, 2015:23-35. HAN M H. Study on plasma flow control of flying wing and lifting device[D]. Xi'an:Air Force Engineering University, 2015:23-35(in Chinese).
[18] 赵光银, 梁华, 李应红, 等. 表面介质阻挡纳秒脉冲放电能量特性和诱导流动特性研究[J]. 中国科学:技术科学, 2015, 45(11):1195-1206. ZHAO G Y, LIANG H, LI Y H, et al. Study of electrical characterization and induced flow by nanosecond pulsed dielectric barrier discharge actuator[J]. Scientia Sinica(Technologica), 2015, 45(11):1195-1206(in Chinese).
[19] CORKE T C, POST M L, ORLOV D M. SDBD plasma enhanced aerodynamics:Concepts, optimizations, and applications[J]. Progress in Aerospace Sciences, 2007, 43(7-8):193-217.
[20] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62:52-78.
[21] CARUANA D. Plasmas for aerodynamic control[J]. Plasma Physics and Controlled Fusion, 2010, 52:124045.
[22] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[23] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31):3060-3068(in Chinese).
[24] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators:AIAA-2011-0487[R]. Reston, VA:AIAA, 2011.
[25] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J]. 航空学报, 2014, 35(3):657-665. NI F Y, SHI Z W, DU H. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):657-665(in Chinese).
[26] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J]. Physics of Fluids, 2011, 23:066101.
[27] WU Y, LI Y, LIANG H, et al. Nanosecond pulsed discharge plasma actuation:Characteristics and flow control performance:AIAA-2014-2118[R]. Reston, VA:2014.
[28] GREENBLATT D, KASTANTIN Y, NAYERI C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
[29] PATEL M P, NG T T, VASUDEVAN S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J]. Journal of Aircraft, 2007, 44(4):1264-1274.
[30] SIDORENKO A A, BUDOVSKIY A D, MASLOV A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54:1585.
[31] ZHANG P F, WANG J J, FENG L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1):249-252.
[32] ZHAO G, LI Y, HUA W, et al. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(11):1966-1974.
[33] 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励实验[J]. 航空动力学报, 2014, 29(10):2331-2339. HUA W Z, LI Y H, NIU Z G, et al. Experiment on low-speed delta wing using nanosecond pulse plasma actuation[J]. Journal of Aerospace Power, 2014, 29(10):2331-2339(in Chinese).
[34] ZHAO G, LI Y, LIANG H, et al. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J]. Experiments in Fluids, 2015, 56:1864.
[35] VISBAL M R, GAITONDE D V. Control of vortical flows using simulated plasma actuators:AIAA-2006-0505[R]. Reston, VA:AIAA, 2006.
[36] MATSUNO T, KAWAGUCHI M, YAMADA G, et al. Development of trielectrode plasma actuator and its application to delta wing vortex control:AIAA-2011-3514[R]. Reston, VA:AIAA, 2011.
[37] SHEN L, WEN C, CHEN H A. Asymmetric flow control on a delta wing with dielectric barrier discharge actuators[J]. AIAA Journal, 2016, 54(2):652-658.
[38] SHEN L, WEN C. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators[J]. Applied Physics Letters, 2017, 110:251904.
[39] 于金革, 牛中国, 梁华, 等. 等离子体用于三角翼模型流动控制试验研究[J]. 空气动力学学报, 2017, 35(2):305-309. YU J G, NIU Z G, LIANG H, et al. Experimental investigation on delta wing flow control by plasma[J]. Acta Aerodynamica Sinica, 2017, 35(2):305-309(in Chinese).
[40] 赵光银, 梁华, 李应红, 等. 纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验[J]. 航空学报, 2015, 36(7):2125-2132. ZHAO G Y, LIANG H, LI Y H, et al. Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2125-2132(in Chinese).
[41] HAN M, LI J, NIU Z, et al. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator[J]. Chinese Journal of Aeronautics, 2015, 28(2):377-384.
[42] HAN M, LI J, LIANG H, et al. Experimental investigation on aerodynamic control of a wing with distributed plasma actuators[J]. Plasma Science and Technology, 2015, 17(6):502-509.
[43] JAYARAMAN B, CHO Y C, SHYY W. Modeling of dielectric barrier discharge plasma actuator:AIAA-2007-4531[R]. Reston, VA:AIAA, 2007.
[44] GRUNDMANN S, KLUMPP S, TROPEA C. Experimental and numerical investigations of boundary-layer influence using plasma-actuators[C]//Active Flow Control. Berlin:Springer, 2006:56-68.
[45] MITCHELL A M, DÉLERY J. Research into vortex breakdown control[J]. Progress in Aerospace Sciences, 2001, 37(4):385-418.
[46] 车学科, 聂万胜, 田希晖, 等. 表面介质阻挡放电等离子体诱导流场相似准则及应用[J]. 高电压技术, 2016, 42(3):769-774. CHE X K, NIE W S, TIAN X H, et al. Similarity criteria of surface dielectric barrier discharge plasma induced flow-field and its application[J]. High Voltage Engineering, 2016, 42(3):769-774(in Chinese).
[47] MURPHY J P, KRIEGSEIS J, LAVOIE P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics, 2013, 113:243301.
[48] GREENBLATT D, WASHBURN A E. Influence of finite span and sweep on active flow control efficacy[J]. AIAA Journal, 2008, 46(7):1675-1694.
[49] VERHAAGEN N G, ELSAYED M. Effects of leading-edge shape on the flow over 50° delta wings:AIAA-2008-7330[R]. Reston, VA:AIAA, 2008.
[50] MCCLAIN A, WANG Z J, VARDAKI E, et al. Unsteady aerodynamics of free-to-roll nonslender delta wings:AIAA-2007-1074[R]. Reston, VA:AIAA, 2007.
[51] VERHAAGEN N G. Leading-edge radius effects on aerodynamic characteristics of 50-degree delta wings[J]. Journal of Aircraft, 2012, 49(2):522-531.
[52] TAKASHIMA K, ZUZEEK Y, LEMPERT W R, et al. Characterization of surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses:AIAA-2010-4764[R]. Reston, VA:AIAA, 2010.
文章导航

/