[1] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146.
[2] GURSUL I, GORDNIER R, VISBAL M. Unsteady aerodynamics of nonslender delta wings[J]. Progress in Aerospace Sciences, 2005, 41(7):515-557.
[3] GURSUL I, WANG Z, VARDAKI E. Review of flow control mechanisms of leading-edge vortices[J]. Progress in Aerospace Sciences, 2007, 43(7-8):246-270.
[4] KWAK D Y, NELSON R C. Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators:AIAA-2010-4837[R]. Reston, VA:AIAA, 2010.
[5] EARNSHAW P B, LAWFORD J A. Low-speed wind-tunnel experiments on a series of sharp-edged delta wings:R&M 3424[R]. 1964.
[6] LOWSON M V. Some experiments with vortex breakdown[J]. The Aeronautical Journal, 1964, 68(641):343-346.
[7] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Science, 2003, 39(2-3):185-248.
[8] 张鑫, 黄勇, 王勋年, 等. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6):1733-1742. ZHANG X, HUANG Y, WANG X N, et al. Flow control on a supercritical wing using dielectric barrier discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1733-1742(in Chinese).
[9] WANG J, LI Y H, XING F. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7):073307.
[10] 杨瑞, 罗振兵, 夏智勋, 等. 高超声速导弹等离子体合成射流控制数值研究[J]. 航空学报, 2016, 37(6):1722-1732. YANG R, LUO Z B, XIA Z X, et al. Numerical study of plasma synthetic jet control on hypersonic missile[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1722-1732(in Chinese).
[11] 吴云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[12] CHE X K, NIE W S, ZHOU P H, et al. Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma[J]. Acta Physica Sinica, 2013, 62(22):224702.
[13] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge:AIAA-2008-1367[R]. Reston, VA:AIAA, 2008.
[14] LITTLE J C. High-lift airfoil separation control with dielectric barrier discharge plasma actuators[D]. Columbus, OH:The Ohio State University, 2010:73.
[15] 赵光银, 梁华, 吴云, 等. 不同时间尺度等离子体气动激励特性的测试诊断[J]. 空军工程大学学报(自然科学版), 2011, 12(5):20-24. ZHAO G Y, LIANG H, WU Y, et al. Diagnosis investigations of plasma aerodynamic actuation characteristics of different time scales[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(5):20-24(in Chinese).
[16] 赵光银. 翼型/三角翼等离子体冲击流动控制机理研究[D]. 西安:空军工程大学, 2015:121-135. ZHAO G Y. Study on flow control mechanism of airfoil/delta wing using plasma shockwave actuation[D]. Xi'an:Air Force Engineering University, 2015:121-135(in Chinese).
[17] 韩孟虎. 飞翼与增升装置等离子体流动控制研究[D]. 西安:空军工程大学, 2015:23-35. HAN M H. Study on plasma flow control of flying wing and lifting device[D]. Xi'an:Air Force Engineering University, 2015:23-35(in Chinese).
[18] 赵光银, 梁华, 李应红, 等. 表面介质阻挡纳秒脉冲放电能量特性和诱导流动特性研究[J]. 中国科学:技术科学, 2015, 45(11):1195-1206. ZHAO G Y, LIANG H, LI Y H, et al. Study of electrical characterization and induced flow by nanosecond pulsed dielectric barrier discharge actuator[J]. Scientia Sinica(Technologica), 2015, 45(11):1195-1206(in Chinese).
[19] CORKE T C, POST M L, ORLOV D M. SDBD plasma enhanced aerodynamics:Concepts, optimizations, and applications[J]. Progress in Aerospace Sciences, 2007, 43(7-8):193-217.
[20] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62:52-78.
[21] CARUANA D. Plasmas for aerodynamic control[J]. Plasma Physics and Controlled Fusion, 2010, 52:124045.
[22] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[23] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31):3060-3068(in Chinese).
[24] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators:AIAA-2011-0487[R]. Reston, VA:AIAA, 2011.
[25] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J]. 航空学报, 2014, 35(3):657-665. NI F Y, SHI Z W, DU H. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):657-665(in Chinese).
[26] NISHIHARA M, TAKASHIMA K, RICH J W, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J]. Physics of Fluids, 2011, 23:066101.
[27] WU Y, LI Y, LIANG H, et al. Nanosecond pulsed discharge plasma actuation:Characteristics and flow control performance:AIAA-2014-2118[R]. Reston, VA:2014.
[28] GREENBLATT D, KASTANTIN Y, NAYERI C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
[29] PATEL M P, NG T T, VASUDEVAN S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J]. Journal of Aircraft, 2007, 44(4):1264-1274.
[30] SIDORENKO A A, BUDOVSKIY A D, MASLOV A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54:1585.
[31] ZHANG P F, WANG J J, FENG L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1):249-252.
[32] ZHAO G, LI Y, HUA W, et al. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(11):1966-1974.
[33] 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励实验[J]. 航空动力学报, 2014, 29(10):2331-2339. HUA W Z, LI Y H, NIU Z G, et al. Experiment on low-speed delta wing using nanosecond pulse plasma actuation[J]. Journal of Aerospace Power, 2014, 29(10):2331-2339(in Chinese).
[34] ZHAO G, LI Y, LIANG H, et al. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J]. Experiments in Fluids, 2015, 56:1864.
[35] VISBAL M R, GAITONDE D V. Control of vortical flows using simulated plasma actuators:AIAA-2006-0505[R]. Reston, VA:AIAA, 2006.
[36] MATSUNO T, KAWAGUCHI M, YAMADA G, et al. Development of trielectrode plasma actuator and its application to delta wing vortex control:AIAA-2011-3514[R]. Reston, VA:AIAA, 2011.
[37] SHEN L, WEN C, CHEN H A. Asymmetric flow control on a delta wing with dielectric barrier discharge actuators[J]. AIAA Journal, 2016, 54(2):652-658.
[38] SHEN L, WEN C. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators[J]. Applied Physics Letters, 2017, 110:251904.
[39] 于金革, 牛中国, 梁华, 等. 等离子体用于三角翼模型流动控制试验研究[J]. 空气动力学学报, 2017, 35(2):305-309. YU J G, NIU Z G, LIANG H, et al. Experimental investigation on delta wing flow control by plasma[J]. Acta Aerodynamica Sinica, 2017, 35(2):305-309(in Chinese).
[40] 赵光银, 梁华, 李应红, 等. 纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验[J]. 航空学报, 2015, 36(7):2125-2132. ZHAO G Y, LIANG H, LI Y H, et al. Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2125-2132(in Chinese).
[41] HAN M, LI J, NIU Z, et al. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator[J]. Chinese Journal of Aeronautics, 2015, 28(2):377-384.
[42] HAN M, LI J, LIANG H, et al. Experimental investigation on aerodynamic control of a wing with distributed plasma actuators[J]. Plasma Science and Technology, 2015, 17(6):502-509.
[43] JAYARAMAN B, CHO Y C, SHYY W. Modeling of dielectric barrier discharge plasma actuator:AIAA-2007-4531[R]. Reston, VA:AIAA, 2007.
[44] GRUNDMANN S, KLUMPP S, TROPEA C. Experimental and numerical investigations of boundary-layer influence using plasma-actuators[C]//Active Flow Control. Berlin:Springer, 2006:56-68.
[45] MITCHELL A M, DÉLERY J. Research into vortex breakdown control[J]. Progress in Aerospace Sciences, 2001, 37(4):385-418.
[46] 车学科, 聂万胜, 田希晖, 等. 表面介质阻挡放电等离子体诱导流场相似准则及应用[J]. 高电压技术, 2016, 42(3):769-774. CHE X K, NIE W S, TIAN X H, et al. Similarity criteria of surface dielectric barrier discharge plasma induced flow-field and its application[J]. High Voltage Engineering, 2016, 42(3):769-774(in Chinese).
[47] MURPHY J P, KRIEGSEIS J, LAVOIE P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics, 2013, 113:243301.
[48] GREENBLATT D, WASHBURN A E. Influence of finite span and sweep on active flow control efficacy[J]. AIAA Journal, 2008, 46(7):1675-1694.
[49] VERHAAGEN N G, ELSAYED M. Effects of leading-edge shape on the flow over 50° delta wings:AIAA-2008-7330[R]. Reston, VA:AIAA, 2008.
[50] MCCLAIN A, WANG Z J, VARDAKI E, et al. Unsteady aerodynamics of free-to-roll nonslender delta wings:AIAA-2007-1074[R]. Reston, VA:AIAA, 2007.
[51] VERHAAGEN N G. Leading-edge radius effects on aerodynamic characteristics of 50-degree delta wings[J]. Journal of Aircraft, 2012, 49(2):522-531.
[52] TAKASHIMA K, ZUZEEK Y, LEMPERT W R, et al. Characterization of surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses:AIAA-2010-4764[R]. Reston, VA:AIAA, 2010.