离散统一气体动理学格式(DUGKS)是一种适用于全流域模拟的有限体积方法。之前的研究考虑了分子平动自由度,验证了DUGKS在多尺度问题中的准确性及稳定性。本文基于Rykov模型方程构造了离散统一气体动理学格式,并采用Landau-Teller-Jeans转动能量松弛模型,可用于双原子气体从连续流动到稀薄流动的多尺度问题计算。测试了激波结构、超声速平板绕流以及超声速圆柱绕流等非平衡流动问题,计算结果显示出双原子气体分子中存在平动自由度与转动自由度对应的能量交换过程,并与统一气体动理学格式(UGKS)、直接蒙特卡罗(DSMC)方法的解以及实验值吻合较好。
The Discrete Unified Gas Kinetic Scheme (DUGKS) is a finite volume method suitable for all Knudsen number regimes. Previous studies considering molecular translational degrees of freedom have verified the accuracy and stability of DUGKS in multiscale problems. In this paper, the DUGKS is constructed based on the Rykov gas kinetic equation, and the Landau-Teller-Jeans rotational energy relaxation model is used. Then the DUGKS can be used in multiscale problem calculation from continuum flow to rarefied flow for diatomic gases. Some non-equilibrium cases, such as one-dimensional shock structure, the hypersonic flow passing a flat plate, and the hypersonic flow around a cylinder have been tested. The results show the existence of energy exchange process corresponding to the degrees of freedom of translation and rotation in diatomic gas molecules. And the calculation results are in good agreement with the Unified Gas Kinetic Scheme (UGKS), Direct Simulation Monte Carlo (DSMC), and experimental values.
[1] MIEUSSENS L. A survey of deterministic solvers for rarefied flows[J]. AIP Conference Proceedings, 2014, 1628(1):943-951.
[2] ARISTOV V V E. Direct methods for solving the Boltzmann equation and study of nonequilibrium flows[M]. Berlin:Springer Science & Business Media, 2012:20-50.
[3] CHU C. Kinetic-theoretic description of the formation of a shock wave[J]. The Physics of Fluids, 1965, 8(1):12-22.
[4] YANG J, HUANG J. Rarefied flow computations using nonlinear model Boltzmann equations[J]. Journal of Computational Physics, 1995, 120(2):323-329.
[5] BOURGAT J-F, LE TALLEC P, TIDRIRI M. Coupling Boltzmann and Navier-Stokes equations by friction[J]. Journal of Computational Physics, 1996, 127(2):227-245.
[6] LOCKERBY D A, DUQUE-DAZA C A, BORG M K, et al. Time-step coupling for hybrid simulations of multiscale flows[J]. Journal of Computational Physics, 2013, 237:344-365.
[7] JIN S. Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[J]. SIAM Journal on Scientific Computing, 1999, 21(2):441-454.
[8] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764.
[9] XU K. Direct modeling for computational fluid dynamics:Construction and application of unified gas-kinetic schemes[M]. Singapore:World Scientific, 2015:10-50.
[10] 徐昆, 陈松泽. 高超声速计算中的气体动理学格式[J]. 航空学报, 2015, 36(1):135-146. XU K, CHEN S Z. Gas kinetic scheme in hypersonic flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):135-146(in Chinese).
[11] GUO Z, XU K, WANG R. Discrete unified gas kinetic scheme for all Knudsen number flows:Low-speed isothermal case[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 88(3):033305.
[12] GUO Z, WANG R, XU K. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅱ. Thermal compressible case[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2015, 91(3):033313.
[13] ZHANG Y, ZHU L, WANG R, et al. Discrete unified gas kinetic scheme for all Knudsen number flows. Ⅲ. Binary gas mixtures of Maxwell molecules[J]. Physical Review E, 2018, 97(5):053306.
[14] WANG R. Unified gas-kinetic scheme for the study of non-equilibrium flows[D]. Hong Kong:Hong Kong University of Science and Technology, 2015:10-25.
[15] 沈青. 稀薄气体动力学[M]. 长沙:国防工业出版社, 2003:10-35. SHEN Q. Rarefied gas dynamics[M]. Changsha:National Defence Industry Press, 2003:10-35(in Chinese).
[16] 张贺. 统一气体动理论格式分子振动模型研究[D]. 西安:西北工业大学, 2015:1-10. ZHANG H. Unified gas kinetic scheme with vibration molecular model[D]. Xi'an:Northwestern Polytechnical University, 2015:1-10(in Chinese).
[17] WANG Z, YAN H, LI Q, et al. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes[J]. Journal of Computational Physics, 2017, 350:237-259.
[18] RYKOV V. A model kinetic equation for a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1975, 10(6):959-966.
[19] 吴俊林, 李志辉, 蒋新宇. 考虑转动能的一维/二维Boltzmann-Rykov模型方程数值算法[J]. 计算物理, 2013, 30(3):326-336. WU J L, LI Z H, JIANG X Y. One-dimensional shock-tube and two-dimensional plate flows in Boltzmann-Rykov model lnvolving rotational energy[J]. Chinese Journal of Computational Physics, 2013, 30(3):326-336(in Chinese).
[20] RYKOV V, TITAREV V, SHAKHOV E. Shock wave structure in a diatomic gas based on a kinetic model[J]. Fluid Dynamics, 2008, 43(2):316-326.
[21] LARINA I, RYKOV V. Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom[J]. Computational Mathematics and Mathematical Physics, 2010, 50(12):2118-2130.
[22] LARINA I, RYKOV V. Computation of rarefied diatomic gas flows through a plane microchannel[J]. Computational Mathematics and Mathematical Physics, 2012, 52(4):637-648.
[23] LIU S, YU P, XU K, et al. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259(2):96-113.
[24] WU L, WHITE C, SCANLON T J, et al. A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases[J]. Journal of Fluid Mechanics, 2015, 763:24-50.
[25] PARKER J. Rotational and vibrational relaxation in diatomic gases[J]. The Physics of Fluids, 1959, 2(4):449-462.
[26] TSUBOI N, MATSUMOTO Y. Experimental and numerical study of hypersonic rarefied gas flow over flat plates[J]. AIAA Journal, 2005, 43(6):1243-1255.
[27] XU K, HE X, CAI C. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations[J]. Journal of Computational Physics, 2008, 227(14):6779-6794.
[28] ZHU L, GUO Z, XU K. Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127:211-225.