机器人制孔系统因其低成本、高效率、高柔性的优势,在飞机壁板装配中得到了广泛应用。机器人自动换刀系统作为飞机壁板机器人制孔系统的重要组成部分,极大地影响着制孔的效率和柔性。本文对机器人自动换刀系统进行分析,着重对刀夹稳定夹持力、换刀过程刀夹阻力和盘式刀库刀夹双环排布进行了深入研究。通过分析刀夹结构和夹紧原理,计算稳定夹持力;通过构建换刀过程中刀具轮廓与刀夹轮廓的几何位置关系,结合受力分析,计算换刀过程刀夹阻力;通过简化刀夹组件轮廓及惯量计算,分别对4种刀夹双环排布方案进行分析研究,以圆形刀盘上的总惯量最小为目标,得到了最优的刀夹排布方式。最后根据实际工程需求,给出了容量为24把刀具的盘式刀库设计实例。
Due to its advantages of low cost, high efficiency and high flexibility, the robotic drilling system has been widely used in aircraft panel assembly. As an important part of the robotic drilling system for aircraft panel, the robotic automatic tool changing system greatly affects the efficiency and the flexibility of drilling. In this paper, the robotic automatic tool changing system is analyzed, focusing on the steady clamping force, the resistance during the process of tool changing, and the double-loop layout of cutter clamp assemblies of the disc-type cutter library. The steady clamping force of the cutter is calculated by analyzing the structure of two finger clips and the clamping principle. The theoretical resistance of the tool changing period is calculated by establishing the geometric relationship between the cutter profile and the clamp profile of the tool changing period and adopting the force analysis. Through simplifying the outline of the cutter assembly and the inertia calculation, researching into four double-loop layout plans, and aiming at minimizing the total inertia of circular cutterhead, the optimal layout plan of cutter clamp assemblies is obtained. Finally, following the project requirements, a design example of the disc-type cutter library with 24 cutters is given.
[1] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-736. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronoutica et Astronautica Sinica, 2008, 29(3):734-736(in Chinese).
[2] 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报, 2019, 40(1):522572. PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronoutica et Astronautica Sinica, 2019, 40(1):522572(in Chinese).
[3] 王巍, 俞鸿均, 谷天慧. 大型飞机壁板组件先进装配技术[J]. 航空制造技术, 2016(5):42-46. WANG W, YU H J, GU T H. Advanced assembly technology of large aircraft panel components[J]. Aeronautical Manufacturing Technology, 2016(5):42-46(in Chinese).
[4] 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京:航空工业出版社, 2011:26-35. FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing:Aviation Industry Press, 2011:26-35(in Chinese).
[5] 杜宝瑞, 冯子明, 姚艳彬, 等. 用于飞机部件自动制孔的机器人制孔系统[J]. 航空制造技术, 2010(2):47-50. DU B R, FENG Z M, YAO Y B, et al. Robot drilling system for automatic drilling of aircraft component[J]. Aeronautical Manufacturing Technology,2010(2):47-50(in Chinese).
[6] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronoutica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).
[7] 董辉跃, 周华飞, 尹富成. 机器人自动制孔中绝对定位误差的分析与补偿[J]. 航空学报, 2015, 36(7):2475-2484. DONG H Y, ZHOU H F, YIN F C. Analysis and compensation for absolute positioning error of robot in automatic drilling[J]. Acta Aeronoutica et Astronautica Sinica, 2015, 36(7):2475-2484(in Chinese).
[8] 黄奇伟, 章明, 曲巍崴, 等. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12):2261-2268, 2275. HUNG Q W, ZHANG M, QU W W, et al. Posture optimization and smoothness for robot drilling[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(12):2261-2268, 2275(in Chinese).
[9] DEVLIEG R, SITTON K, FEIKERT E, et al. Once (one-sided cell end effector) robotic drilling system:SAE-2002-01-2626[R]. Warrendale, PA:SAE, 2002.
[10] ATKINSON J, HARTMANN J, JONES S, et al. Robotic drilling system for 737 aileron:SAE-2007-01-3821[R]. Warrendale, PA:SAE, 2002.
[11] FANG Q, CHEN W, ZHAO A, et al. Control system designing for correcting wing-fuselage assembly deformation of a large aircraft[J]. Assembly Automation, 2017, 37(1):22-33.
[12] OLSSON T, HAAGE M, KIHLMAN H, et al. Cost-efficient drilling using industrial robots with high-band-width force feedback[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(1):24-38.
[13] LIANG J, BI S. Design and experimental study of an end effector for robotic drilling[J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1-4):399-407.
[14] 杜兆才, 姚艳彬, 王健. 机器人钻铆系统研究现状及发展趋势[J]. 航空制造技术, 2015, 437(4):26-31. DU Z C, YAO Y B, WANG J. Research status and development trends of robot drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2015, 437(4):26-31(in Chinese).
[15] DEVLIEG R. Robotic trailing edge flap drilling system:SAE Technical Paper 2009-01-3244[R]. Warrendale, PA:SAE, 2009.
[16] EVERHART T. Neighboring mobile robot cell with drilling and fastening:SAE Technical Paper 2017-01-2094[R]. Warrendale, PA:SAE, 2017.
[17] LOGEMANN T. Mobile robot assembly cell (RACe) for drilling and fastening:SAE Technical Paper 2016-01-2078[R]. Warrendale, PA:SAE, 2016.
[18] BI Y B, LI Y C, JIANG Y H, et al. An industrial robot based drilling system for aircraft structures[J]. Applied Mechanics & Materials, 2013, 433-435:151-157.
[19] BI S, LIANG J. Robotic drilling system for titanium structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8):767-774.
[20] 李加明, 陶卫军, 冯虎田. 自动换刀装置发展现状及其关键技术[J]. 机床与液压, 2013, 41(5):174-176. LI J M, TAO W J, FENG H T. Development status and key technologies of automatic tool changer[J]. Machine Tool & Hydraulics, 2013, 41(5):174-176(in Chinese).