流体力学与飞行力学

大型民用飞机气动外形典型综合设计方法

  • 黄江涛 ,
  • 高正红 ,
  • 余婧 ,
  • 郑传宇 ,
  • 周铸
展开
  • 1. 中国空气动力研究与发展中心计算空气动力研究所, 绵阳 621000;
    2. 西北工业大学 航空学院, 西安 710072

网络出版日期: 2019-03-02

基金资助

国家自然科学基金(11402288);国家重点研发计划(2016YFB0200704)

A typical integrated design method for aerodynamic shape optimization of large civil aircraft

  • HUANG Jiangtao ,
  • GAO Zhenghong ,
  • YU Jing ,
  • ZHENG Chuanyu ,
  • ZHOU Zhu
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Online published: 2019-03-02

Supported by

National Natural Science Foundation of China (11402288); National Key R&D Program of China (2016YFB0200704)

摘要

基于自主研发的飞行器气动外形大规模并行化、分布式综合设计软件AMDEsign,开展了大型民用飞机气动外形多目标综合设计,研究了处理高维目标空间多目标优化问题的有效处理方式,为优化数学模型的合理确定提供数据参考。在此基础之上,基于软件AMDEsign的主分量分析(PCA)、离散伴随方法两个典型模块,对宽体飞机数字化模型开展多目标优化,其中离散伴随方法中引入虚拟可行解集逼近方法,为权系数提供有效的导向性选择;并进一步将结果进行多目标评估分析,设计结果表明,主分量分析能够有效识别目标函数的相关性,虚拟可行解集方法效率较高,充分利用了离散伴随效率高以及导向性权函数预测等优点,多点设计外形在巡航升阻比、抖振特性以及阻力发散等性能上具有明显改善。文中提出的综合设计方法简捷高效且具有较强的工程应用价值。

本文引用格式

黄江涛 , 高正红 , 余婧 , 郑传宇 , 周铸 . 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019 , 40(2) : 522369 -522369 . DOI: 10.7527/S1000-6893.2019.22369

Abstract

To study multi-objective optimization in the high-dimensional target space, a multi-objective integrated design for the aerodynamic shape of large civilian aircraft is carried out by using the AMDEsign, a self-developed software for large-scale parallelization and distributed optimization of aircraft aerodynamic shape. The multi-objective optimization of the digitized model of a wide-body aircraft is performed by two typical modules of AMDEsign:Principal Componet Analysi (PCA) and the discrete adjoint method. The discrete adjoint method is combined with the virtual pareto solution set method to provide an effective directional choice for the weight coefficient. The design results show that the principal component analysis can effectively identify the correlation of the objective function, and the virtual feasible solution set method has high efficiency. The design also fully utilizes the advantages of high efficiency of discrete adjoint and the prediction capabilities of the guided weight function. The multi-point optimized configuration demonstrate significant improvements in cruise lift-drag ratio, drag convergence characteristics, and resistance divergence. The integrated design method proposed is shown to be simple, efficient and applicable in practice.

参考文献

[1] FANG X M, ZHANG Y F, CHEN H X. Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm:AIAA-2016-3833[R]. Reston, VA:AIAA, 2016.
[2] HAN Z H, ZHANG K S, LIU J, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils:AIAA-2013-1108[R]. Reston, VA:AIAA, 2013.
[3] ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic and structural optimization of a subsonic-transport wing using surrogate model:AIAA-2008-897[R]. Reston, VA:AIAA, 2008.
[4] HUANG J T, GAO Z H, ZHAO K, et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5):523-528.
[5] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston, VA:AIAA, 2016.
[6] 李焦赞, 高正红. 多目标进化算法和代理模型技术在气动稳健优化设计中的应用[J]. 空气动力学学报, 2012, 30(1):47-51. LI J Z, GAO Z H. The application of multi-objective evolutionary algorithm and surrogate model to aerodynamic robust optimization design[J]. Acta Aerodynamica Sinica, 2012, 30(1):47-51(in Chinese).
[7] 王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学:技术科学, 2015, 45(6):643-653. WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica Technologica, 2015, 45(6):643-653(in Chinese).
[8] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3:233-260.
[9] CARPENTIERI G. An adjoint-based shape-optimization method for aerodynamic design[D]. Delft:Delft Technische Universiteit, 2009.
[10] DWIGHT R P, BREZILLON J. Effect of various approximations of the discrete adjoint on gradient-based optimization:AIAA-2006-0690[R]. Reston, VA:AIAA, 2006.
[11] 左英桃, 高正红, 詹浩. 基于N-S方程和离散共轭方法的气动设计方法研究[J]. 空气动力学学报, 2009, 27(1):67-72. ZUO Y T, GAO Z H, ZHAN H. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2009, 27(1):67-72(in Chinese).
[12] 高宜胜, 伍贻兆, 夏健. 基于非结构网格离散型伴随方法的翼型优化[J]. 空气动力学学报, 2013, 31(2):244-249. GAO Y S, WU Y Z, XIA J. A discrete adjoint-based approach for airfoil optimization on unstructured meshes[J]. Acta Aerodynamica Sinica, 2013, 31(2):244-249(in Chinese).
[13] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[14] LYU Z J, KENWAY G K, MARTINS J R R A. RANS-based aerodynamic shape optimization investigations of the common research model wing:AIAA-2014-0567[R]. Reston, VA:AIAA, 2014.
[15] KENWAY G K, MARTINS J R R A. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2016.
[16] HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348.
[17] 郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4):588-597. ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisciplinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4):587-597(in Chinese).
[18] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[19] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[20] 刘刚, 肖中云, 王建涛, 等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报, 2015, 33(2):192-197. LIU G, XIAO Z Y, WANG J T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerodynamica Sinica, 2015, 33(2):192-197(in Chinese).
[21] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multiblock domain decompositions[C]//Proceedings of 6th International Conference on Numerical Grid Generation in Computational Field Simulations, 1998.
文章导航

/