电子电气工程与控制

民用飞机信息重构技术性能分析

  • 许健 ,
  • 吴磊 ,
  • 褚江萍 ,
  • 何珂
展开
  • 中国商飞上海飞机设计研究院, 上海 201210

网络出版日期: 2019-03-02

Performance analysis of information reconfiguration technology on civil aircraft

  • XU Jian ,
  • WU Lei ,
  • CHU Jiangping ,
  • HE Ke
Expand
  • COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Online published: 2019-03-02

摘要

大尺寸显示器已经广泛应用于新一代民用飞机的驾驶舱内。虽然通过提高信息集成度能够提升飞行员的用户体验,但是,正因为其要求的系统集成度高,在发生局部失效时,容易导致集成显示信息的共模失效,加之信息布局对管理操作任务的性能有着重要影响,如果诱发工作负荷的增加,在特定场景下甚至会迫使飞行机组丧失必要的任务情景意识。信息重构技术是应对此类问题的重要手段。在民用飞机机组资源管理理念的指导下,根据飞行机组的职责分配和人机工程学要求,论述了在主仪表板布置4块15 inch正屏显示器的布局是一种具有比较优势的布局方案。从关键飞行场景下飞行机组的操作任务需求入手,基于正常操作流向保持、压缩格式、重构操作、以及职责分配一致性这4个评价信息重构性能的要素,通过对比分析,证明了所提的显示管理策略相较于某现役先进机型具有更优的信息重构性能。

本文引用格式

许健 , 吴磊 , 褚江萍 , 何珂 . 民用飞机信息重构技术性能分析[J]. 航空学报, 2019 , 40(2) : 522442 -522442 . DOI: 10.7527/S1000-6893.2019.22442

Abstract

Large-area display have been widely used in the cockpit of a new generation of civil aircraft. Although improving the information integration can improve the pilot's user experience, the high requirement of system integration is likely to cause the common mode failure of integrated display information in local failure. Since the information layout has an important influence on the performance of operation task management, if the increase of workload is induced, the flight crew may lose the necessary situational awareness in specific scenarios. Information reconfiguration technology is an important means to deal with such problems. Based on the management of crew resource in civil aircraft, the duty allocation of the flight crew, and the requirement of ergonomics, a 15 inch square-screen display on the main instrument panel is proposed as a layout scheme with comparative advantages. Starting from the flight crew operation task requirement under the critical scenario and based on the consistency of normal operation flow, compact format, reconfiguration function operation, and consistency of duty allocation, It proves that the display management strategy of this paper show a better information reconfiguration performance than the advanced reference aircraft through comparative analysis. At present, few articles have systematically analyzed and summarized this topic.

参考文献

[1] 中国民用航空局飞行标准司. 机组资源管理训练:AC-121-FS-2011-41[S]. 北京:中国民用航空局, 2011. CAAC Flight Standard Division. Crew resource management training:AC-121-FS-2011-41[S]. Beijing:CAAC, 2011(in Chinese).
[2] ROGER W S, DENNIS B B, JOHN L, et al. Priorities, organization, and sources of information accessed by pilots in various phases of flight:DOT/FAA/AM-00/26[R]. Washington, D.C.:Office of Aviation Medicine, 2000.
[3] PAUL C S, ANNA C T. Flight crew task management in non-normal situations[J/OL]. NASA Langley Research Center, (2004-11-04)[2018-05-17]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020040110.pdf.
[4] LOUKIA D L, KEY D, IMMANUEL B. Cockpit interruptions and distractions:A line observation study[C]//Proceedings of the 11th International Symposium on Aviation Psychology, 2001:1-6.
[5] EDWIN H. The cognitive consequences of patterns of information flow[J]. Intellectica, 1999, 30:53-74.
[6] KEN F, ROLF B. The agenda manager:A knowledge-based system to facilitate the management of flight deck activities[C]//1999 World Aviation Conference. Warrendale, PA:SAE International, 1999:922-936.
[7] 中国民用航空局. 中国民用航空规章第25部运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. CAAC. Airworthiness standards for transport aircraft of CCAR part25:CCAR-25-R4[S]. Beijing:CAAC, 2011(in Chinese).
[8] FAA. Airworthiness standards:Transport category airplanes:FAR Part25[S]. Washington, D.C.:FAA, 2018.
[9] EASA. Certification specifications for large aeroplanes:CS-25[S]. Cologne:EASA, 2018.
[10] Committee S-7. Flight crew interface considerations in the flight deck design process for Part 25 aircraft:SAE ARP5056[S]. Warrendale, PA:SAE International, 2006.
[11] FAA. Electronic flight displays:AC25-11B[S]. Washington, D.C.:FAA, 2014.
[12] Committee S-7. Appendix A electronic display symbology for EADI/PFD:SAE ARP4102-7[S]. Warrendale, PA:SAE International, 1999.
[13] FAA. Criteria for approval of category Ⅲ weather minima for takeoff, landing, and rollout:AC120-28D[S]. Washington, D.C.:FAA, 1999.
[14] FAA. Criteria for approval of category Ⅲ weather minima for takeoff, landing, and rollout:AC120-29A[S]. Washington, D.C.:FAA, 1999.
[15] FAA. Criteria for approval of category I and category Ⅱ weather minima for approach:AC120-29A[S]. Washington, D.C.:FAA, 2002
[16] FAA. Approval guidance for Required Navigation Performance (RNP) procedures with Authorization Required (AR):AC90-101A[S]. Washington, D.C.:FAA, 2011.
[17] RTCA. Minimum aviation system performance standards:Required navigation performance for area navigation:DO-236C[S]. Washington D.C.:RTCA Inc., 2013.
[18] Committee S-7. Appendix C electronic display symbology for engine displays:SAE ARP4102-7[S]. Warrendale, PA:SAE International, 1999.
[19] Committee S-7. Appendix B electronic display symbology for EHSI/ND:SAE ARP4102-7[S]. Warrendale, PA:SAE International, 1999.
[20] Committee S-7. Flight deck layout and facilities:SAE ARP4101[S]. Warrendale, PA:SAE International, 2003.
[21] ISO. Basic human body measurements for technological design-Part 2:Statistical summaries of body measurements from national populations:ISO/TR 7250-2[S]. Geneva:ISO, 2010.
[22] Committee S-7. Pilot visibility from the flight deck:SAE ARP4101-2[S]. Warrendale, PA:SAE International, 2003.
[23] Committee S-7. Numeral, letter and symbol dimensions for aircraft instrument displays:SAE AIR1093A[S]. Warrendale, PA:SAE International, 2003
[24] Committee S-7. Flight deck display panels, controls, and displays:SAE ARP4102[S]. Warrendale, PA:SAE International, 2007.
[25] AEEC. Cockpit display system interfaces to user systems:ARINC661-6[S]. Annapolis, MD:Aeronautical Radio Inc., 2016.
文章导航

/