电子电气工程与控制

基于最大序列相关性的Turbo码交织器识别

  • 吴昭军 ,
  • 张立民 ,
  • 钟兆根
展开
  • 1. 海军航空大学 信息融合研究所, 烟台 264001;
    2. 海军航空大学 航空基础学院, 烟台 264001

收稿日期: 2018-11-01

  修回日期: 2019-01-10

  网络出版日期: 2019-02-26

基金资助

国家自然科学基金(91538201);泰山学者工程专项(Ts201511020)

Blind recognition of interleaver for Turbo codes based on maximum sequence correlation

  • WU Zhaojun ,
  • ZHANG Limin ,
  • ZHONG Zhaogen
Expand
  • 1. Institute of Information Fusion, Naval Aviation University, Yantai 264001, China;
    2. School of Basis of Aviation, Naval Aviation University, Yantai 264001, China

Received date: 2018-11-01

  Revised date: 2019-01-10

  Online published: 2019-02-26

Supported by

National Natural Science Foundation of China (91538201); Special Fund of Taishan Scholars (Ts201511020)

摘要

针对现有算法在Turbo码交织器识别中存在低信噪比适应性差,且识别性能随交织长度增加而急剧恶化的缺点,提出了基于最大校正序列相关的识别算法。该算法首先利用已识别的交织位置序列对每一帧交织位置上的信息序列进行估计,通过遍历可能的交织位置,并作互相关运算,当遍历位置为交织映射关系时,该位置上的数据序列与估计序列具有最大的相似度,从而完成交织位置识别;然后充分利用这些交织位置上的序列,分别估计出校正数据序列,将校正的序列再与原始序列叠加,完成码元校正,直到所有的交织关系识别完成。所提算法直接利用了截获的软判决信息,同时能够实现码元校正,这就克服了以往算法的两个缺点。仿真结果表明,在信噪比为-1 dB,交织长度为1024时,所提出算法仅仅需要1000数据帧,就能达到100%的识别率,与以往算法相比,性能提升2~3 dB,同时完成一次可靠识别所需的数据量仅需以往算法的1/4。

本文引用格式

吴昭军 , 张立民 , 钟兆根 . 基于最大序列相关性的Turbo码交织器识别[J]. 航空学报, 2019 , 40(6) : 322764 -322764 . DOI: 10.7527/S1000-6893.2019.22764

Abstract

The existing algorithms in the recognition of interleaver for Turbo codes have poor adaptability to low SNR and deteriorate sharply with the increase of interleaving length. To address these disadvantages, a new algorithm based on the maximum correction sequences correlation is proposed. First, the algorithm estimates the information sequences at each interleaved position by using the identified interleaved positions sequences. The possible interleaved positions are traversed and the cross-correlation operation is performed. When the traversing position is an interleaved mapping relation, the data sequences at that position have the greatest similarity with the estimated sequences, thus completing recognition. Then, by making full use of the sequences on the interleaved positions, the corrected data sequence is estimated and the corrected sequence is superimposed with the original sequence to complete symbol correction until all the interleaved relations are identified. The proposed algorithm utilizes the intercepted soft decision information directly and achieves symbol correction at the same time, overcoming two shortcomings of the previous algorithms. Simulation results show that when the SNR is -1 dB and interleaving length is 1024, the recognition rate can reach 100% with 1000 blocks of data frames. Compared with the previous algorithms, the performance of the proposed algorithm is improved by 2 to 3 dB, and the amount of data needed to complete a reliable identification is reduced to less than 1/4 of the original data.

参考文献

[1] MUKHTAR H, AL-DWEIK A, SHAMI. Turbo product codes:Applications, challenges, and future directions[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4):3052-3069.
[2] 谢辉, 黄知涛, 王峰华. 信道编码盲识别技术研究进展[J]. 电子学报, 2013, 41(6):1166-1176. XIE H, HUANG Z T, WANG F H. Research progress of blind recognition of channel coding[J]. Acta Electronica Sinica, 2013, 41(6):1166-1176(in Chinese).
[3] 张立民, 吴昭军, 钟兆根. 基于校验方程符合度下的Turbo码编码器盲识别[J]. 电子与信息学报, 2017, 39(9):2155-2161. ZHANG L M, WU Z J, ZHONG Z G. Blind recognition of turbo code encoder based on conformity of parity-check equation[J]. Journal of Electronics & Information Technology, 2017, 39(9):2155-2161(in Chinese).
[4] 张立民, 吴昭军, 钟兆根. 一种基于遗传算法的RSC码盲识别方法[J]. 航空学报, 2017, 38(11):321246. ZHANG L M, WU Z J, ZHONG Z G. Blind identification of RSC code based on genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):321246(in Chinese).
[5] 吴昭军, 张立民, 钟兆根, 等. 基于离散PSO算法的RSC码识别[J]. 电子学报, 2018, 46(7):1644-1651. WU Z J, ZHANG L M, ZHONG Z G, et al. Blind recognition of RSC based on discrete PSO[J]. Acta Electronica Sinica, 2018, 46(7):1644-1651(in Chinese).
[6] YU P D, LI J, PENG H. A least square method for parameter estimation of RSC sub-codes of turbo codes[J]. IEEE Communications Letters, 2014, 18(4):644-647.
[7] NASERI A, AZMOON O, FAZELI S. Blind recognition algorithm of Turbo codes for communication intelligence systems[J]. International Journal of Computer Science Issues, 2011, 8(6):68-72.
[8] 张旻, 陆凯, 李歆昊, 等. 归零Turbo码的盲识别方法[J]. 系统工程与电子技术, 2016, 38(6):1424-1427. ZHANG M, LU K, LI X H, et al. Blind recognition method for the turbo codes on trellis termination[J]. Journal of Systems Engineering and Electronics, 2016, 38(6):1424-1427(in Chinese).
[9] 吴昭军, 张立民, 钟兆根. 高误码率下归零Turbo码参数识别[J]. 兵工学报, 2018, 39(4):731-742. WU Z J, ZHNG L M, ZHONG Z G. Blind identification of turbo codes on trellis termination at high bit error rate[J]. Acta Armamen-Tarll, 2018, 39(4):731-742(in Chinese).
[10] 甘露, 刘宗辉, 廖红舒, 等. 卷积交织参数的盲估计[J]. 电子学报, 2011, 39(9):2173-2177. GAN L, LIU Z H, LIAO H S, et al. Blind estimation of the parameters of convolutional interleaver[J]. Acta Electronica Sinica, 2011, 39(9):2173-2177(in Chinese).
[11] 于沛东, 彭华, 巩克现, 等. 利用帧同步码的卷积交织器快速盲识别方法[J]. 电子学报, 2018, 46(6):1530-1536. YU P D, PENG H, GONG K X, et al. Fast blind recognition of convolutional interleavers based on existence of frame sync codes[J]. Acta Electronica Sinica, 2018, 46(6):1530-1536(in Chinese).
[12] 陈泽亮, 巩克现, 彭华, 等. 基于软信息的分组交织和卷积码联合识别[J]. 电子学报, 2018, 46(6):1454-1460. CHEN Z L, GONG K X, PENG H, et al. Joint blind recognition of pachet interleaver and convolution code based on soft information[J]. Acta Electronica Sinica, 2018, 46(6):1454-1460(in Chinese).
[13] MAXIME C, NICOLAS S. Reconstruction of a Turbo-code interleaver from noisy observation[C]//International Symposium on Information Theory 2010. Piscataway, NJ:IEEE Press, 2010:2003-2007.
[14] MATHIEU C, MAHHTIEU F, JEAN P T. Methods for the reconstruction of parallel Turbo codes[C]//International Symposium on Information Theory 2010. Piscataway, NJ:IEEE Press, 2010:2008-2012.
[15] 任亚博, 张健, 刘以农. 高误码率下Turbo码交织器的恢复方法[J]. 电子与信息学报, 2015, 37(8):1927-1930 REN Y B, ZHANG J, LIU Y N. Reconstruction of turbo-code interleaver at high bit error rate[J]. Journal of Electronics & Information Technology, 2015, 37(8):1927-1930(in Chinese).
[16] 刘骏, 李静, 于沛东. 一种Turbo码随机交织器的迭代估计方法[J]. 通信学报, 2015, 36(6):201-206. LIU J, LI J, YU P D. Iterative estimation method for random interleaver of turbo codes[J]. Journal on Communications, 2015, 36(6):201-206(in Chinese).
[17] 刘俊, 李静, 彭华. 基于校验矩阵平均符合度的Turbo码交织器估计[J]. 电子学报, 2016, 44(5):1214-1218. LIU J, LI J, PENG H. Estimation of Turbo-code interleaver based on average conformity of parity-check equation[J]. Acta Electronica Sinica, 2016, 44(5):1213-1218(in Chinese).
[18] 吴昭军, 张立民, 钟兆根. 低信噪比下随机交织器识别[J]. 电讯技术, 2018, 58(1):52-58. WU Z J, ZHANG L M, ZHONG Z G. Blind recognition of random interleaver at low SNR[J]. Telecommunication Engineering, 2018, 58(1):52-58(in Chinese).
[19] 陈泽亮, 李静, 彭华, 等. 利用Gibbs采样进行优化的Turbo码交织器识别[J]. 电子学报, 2018, 46(1):15-23. CHEN Z L, LI J, PENG H, et al. An optimization method using Gibbs sampler for turbo code interleaver identification[J]. Acta Electronica Sinica, 2018, 46(1):15-23(in Chinese).
[20] YU P D, LI J, PENG H. Gibbs sampling based parameter estimation for RSC sub-codes of Turbo codes[C]//Sixth International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway, NJ:IEEE Press, 2014:1-5.
[21] SHEN B, PATAPOUTIAN A, MCEWEN P A, et al. Punctured recursive convolutional encoders and their applications in turbo codes[J]. IEEE Transactions on Information Theory, 2001, 47(6):2300-2320.
文章导航

/