电子电气工程与控制

反向交叉眼对单脉冲雷达干扰效果分析及仿真验证

  • 周亮 ,
  • 孟进 ,
  • 吴灏 ,
  • 刘永才 ,
  • 刘伟
展开
  • 海军工程大学 舰船综合电力技术国防科技重点实验室, 武汉 430033

收稿日期: 2018-10-24

  修回日期: 2018-11-26

  网络出版日期: 2019-02-26

基金资助

国家自然科学基金(71801220,61801502)

Analysis and simulation verification of retrodirective cross-eye against monopulse radar

  • ZHOU Liang ,
  • MENG Jin ,
  • WU Hao ,
  • LIU Yongcai ,
  • LIU Wei
Expand
  • National Key Laboratory for Vessel Integrated Power System Technology, Naval University of Engineering, Wuhan 430033, China

Received date: 2018-10-24

  Revised date: 2018-11-26

  Online published: 2019-02-26

Supported by

National Natural Science Foundation of China(71801220,61801502)

摘要

交叉眼干扰被认为是对单脉冲雷达干扰最有效的方式之一。基于雷达方程建立了隔离平台回波下的两点源反向交叉眼干扰模型,推导了交叉眼干扰欺骗角一般性公式,研究了干扰机发射天线间距、干扰平台旋转角和干扰机相对雷达之间距离等参数变化对角度欺骗效果的影响,并依据单脉冲雷达接收机获取角度的信息处理流程,建立了单脉冲雷达接收机仿真模型,对交叉眼数学模型的正确性和局限性进行了分析。研究结果表明:单脉冲雷达越靠近两点源交叉眼干扰机中心线、干扰机两发射天线间距越大、与干扰机距离越近时,角度欺骗效果越好;单脉冲雷达的欺骗角度随着与干扰机距离的接近呈指数式增大;数学模型和仿真模型计算的单脉冲雷达角度误差最大值随干扰机天线与雷达天线中心连线的夹角的增大呈指数化增长。研究可为交叉眼干扰工程设计作参考。

本文引用格式

周亮 , 孟进 , 吴灏 , 刘永才 , 刘伟 . 反向交叉眼对单脉冲雷达干扰效果分析及仿真验证[J]. 航空学报, 2019 , 40(8) : 322755 -322755 . DOI: 10.7527/S1000-6893.2019.22755

Abstract

Cross-eye jamming is considered to be one of the most effective methods for monopulse radar. Based on the radar equation, a two point source retrodirective cross-eye mathematical model under isolated platform echoes is established, and a general formula of indicate angle is derived. The influences of the parameters such as the distance between the jammer and the radar, the distance between the transmitting antenna, and the rotation angle of the jamming platform on the angle deception effect are studied. A simulation model of monopulse radar receiver is established in reference to the processing flow of the angle obtained by the monopulse radar. The correctness and limitation of the mathematical model are analyzed. The results show that the closer the monopulse radar is to the central line of the jammer, the larger the distance between the two transmitting antennas, and the smaller the distance between the monopulse radar and the jammer, the better the effect of angle deception. The deception angle of the monopulse radar increases exponentially with the decrease of the range. The maximal difference between the monopulse radar angle calculated by the mathematical model and by the simulation model increases exponentially with the increase of the angle between the jammer antenna and the center of radar antenna. This paper is implicational for designing cross-eye jammer engineering.

参考文献

[1] FALK L. Cross-eye jamming of monopulse radar[C]//IEEE Waveform Diversity & Design Conference. Piscataway, NJ:IEEE Press, 2007:209-213.
[2] 刘天鹏. 多源反向交叉眼干扰技术研究[D]. 长沙:国防科学技术大学, 2016:111-113. LIU T P. Research on multiple-element retrodirective cross-eye jamming[D]. Changsha:National University of Defense Technology, 2016:111-113(in Chinese).
[3] ZHANG Y, SHI C, DAI H. Design of a simulation system for cross-eye dynamic jamming[C]//Proceedings of 2017 Chinese Intelligent Automation Conference. Berlin:Springer, 2017:1-11.
[4] DUPLESSIS W P, ODENDAAL J W, JOUBERT J. Experimental simulation of retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace & Electronic Systems, 2011, 47(1):734-740.
[5] 王建路, 戴幻尧,张扬,等. 反向交叉眼干扰特性建模与仿真[J]. 雷达科学与技术, 2016, 14(5):471-477. WANG J L, DAI H Y, ZHANG Y, et al. Analysis of cross-eye jamming characteristic with reverse structure[J]. Radar Science and Technology, 2016, 14(5):471-477(in Chinese).
[6] CAO F, LIU Q, WU F. The cross-eye jamming mathematical modeling[J]. Applied Mechanics and Materials, 2013, 344:125-128.
[7] PLESSIS W P. Statistical Skin-return results for retrodirective cross-eye jamming[J/OL]. IEEE Transactions on Aerospace & Electronic Systems, 2017, http://hdl.handle.net/2263/60243.
[8] LIU S Y, DONG C X, XU J, et a1. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14:939-942.
[9] 刘松杨, 董春曦,董阳阳,等. 旋转的正交多点源反向交叉眼干扰分析[J. 电子与信息学报, 2016, 38(6):1424-1430. LIU S Y, DONG C X, DONG Y Y, et a1. Analysis of rotating orthogonal multiple elements retrodirective cross-eye jamming[J]. Journal of Electronics & Information Technology, 2016, 38(6):1424-1430(in Chinese).
[10] 刘松杨, 董春曦,朱颖童,等. 基于角度参数特定边界值的旋转交叉眼干扰容限研究[J]. 电子与信息学报, 2016, 38(4):906-912. LIU S Y, DONG C X, ZHU Y T, et a1. Tolerance analysis of rotating cross-eye jamming based on angle factor specific boundary value[J].Journal of Electronics & Information Technology, 2016, 38(4):906-912(in Chinese).
[11] LIU T, LIAO D, WEI X, et al. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):1867-1876.
[12] 王彩云, 何志勇,宫俊. 多干扰机反向交叉眼干扰分析[J]. 系统工程与电子技术, 2017, 39(7):1457-1463. WANG C Y, HE Z Y, GONG J. Analysis of retro-directive cross-eye jamming for multiple elements[J]. Systems Engineering and Electronics, 2017, 39(7):1457-1463(in Chinese).
[13] LIU T, LIU Z, LIAO D, et al. Platform skin return and multiple-element linear retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(2):821-835.
[14] HARWOOD N M, DAWBER W N, KING D J, et al. Multiple-element crosseye[J]. IET Radar Sonar & Navigation, 2007, 1(1):67-73.
[15] LU J, LIU T, LIU Z, et al. Analysis of multi-loop retrodirective cross-eye jamming system for large platform[C]//Progress in Electromagnetics Research Symposium-Spring, 2017:565-572.
[16] PLESSIS W P D. Analysis of path-length effects in multi-loop cross-eye jamming[J]. IEEE Transactions on Aerospace & Electronic Systems, 2017, 53(5):2266-2276.
[17] PETERSSON B. Error estimation in retrodirective channel implementation[C]//IEEE International Conference on Microwaves, Antennas, Communication and Electronic Systems. Piscataway, NJ:IEEE Press, 2017:1-6.
[18] PETERSSON B. Modeling of retro directive channel with active antenna arrays for cross-eye jamming[D]. Sweden:Licentiate Thesis KTH Royal Institute of Technology Stockholm, 2017.
[19] JIAZHI M A, SHI L, XIAO S, et al. Mitigation of cross-eye jamming using a dual-polarization array[J]. Systems Engineering and Electronics, 2018, 29(3):491-1463.
[20] BACCHELLI A. New technologies and innovative techniques for new-generation ECM systems[R/OL]. Elettronica Sp A, 2002.https://www.myaoc.org/eweb/images/aoc_library/Events/2002/102802_CONV/02CONV_Proceedings/Day2/Track2/Bacchelli.pdf.
[21] DE MARTINO A. Introduction to modern EW systems[M]. Norwood, MA:Artech House, 2012:255-260.
[22] 顾燕飞.对反舰导弹末制导雷达的干扰技术研究[D]. 镇江:江苏科技大学, 2012:23-25. GU Y F.Research on jamming technology for terminal guidance radar of anti-ship missile[D]. Zhenjiang:Jiangsu University of Science and Technology, 2012:23-25(in Chinese).
[23] SHERMAN S M, BARTON D K. Monopulse principles and techniques[M]. 2nd ed. Boston:Artch House, 2014:66-70.
[24] 张娇云. 单脉冲雷达导引头建模与仿真研究[D].西安:西安电子科技大学, 2006:5-22. ZHANG J Y. The study on modeling and simulation of monopulse radar seeker[D]. Xi'an:Xidian University, 2006:5-22(in Chinese).
[25] PLESSIS W P D. A comprehensive investigation of retrodirective cross-eye jamming[D]. Pretoria:University of Pretoria, 2010:49-50.
文章导航

/