The integrally-stiffened panel, especially high stiffened integral panel, is commonly used in the aerospace industry due to its high structural efficiency, obvious weight loss benefits and good sealing effect. Stress peen forming is an effective process to induce curvatures in large-medium, long-life, high-performance complex integrally-stiffened panel. Numerical simulation is a promising approach that promotes the investigation, development and application in stress peen forming of integrally-stiffened panel. In order to simulate the stress peen forming of integrally-stiffened panel, a multi-shot impact finite element model based on response surface function, an reverse bending stress field simulation model based on strain neutral layer shifting to inner compression region and a stress peen forming RBF neural network prediction model are established. By applying these three models, the numerical simulation of stress field method, the high-precision numerical simulation and deformation prediction of stress peen forming for integrally-stiffened panel are realized. The present study provides a more convenient, efficient and economical way for the research and application of the stress peen forming process for integrally-stiffened panel.
[1] 尚建勤, 曾元松. 喷丸成形技术及未来发展与思考[J]. 航空制造技术, 2010(16):26-29. SHANG J Q, ZENG Y S. Shot forming technology and its development trend and thinking[J]. Aeronautical Manufacturing Technology, 2010(16):26-29(in Chinese).
[2] 尚建勤. 预应力对喷丸成形的影响[J]. 锻压技术, 2001(1):42-43. SHANG J Q. Effect of pre-stress on peen-forming[J]. Forging & Stamping Technology, 2001(1):42-43(in Chinese).
[3] 曾元松, 尚建勤, 许春林, 等. ARJ21飞机大型超临界机翼整体壁板喷丸成形技术[J]. 航空制造技术, 2007(3):38-41. ZENG Y S, SHANG J Q, XU C L, et al. Shot peen forming technology for large supercritical wing integral panel of ARJ21 aircraft[J]. Aeronautical Manufacturing Technology, 2007(3):38-41(in Chinese).
[4] XIAO X D, WANG Y J, ZHANG W, et al. Numerical research on stress peen forming with prestressed regular model[J]. Journal of Materials Processing Technology, 2016, 229:501-513.
[5] 曾元松, 黄遐. 大型整体壁板成形技术[J]. 航空学报, 2008, 29(3):721-727. ZENG Y S, HUANG X. Forming technologies of large integral panel[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):721-727(in Chinese).
[6] MIAO H Y, DEMERS D, LAROSE S, et al. Experimental study of shot peening and stress peen forming[J]. Journal of Materials Processing Technology, 2010, 210(15):2089-2102.
[7] MEYER R, RECCIUS H, SCHULWIN R. Shot peen-forming of nc-machined parts with integrated stringers using large balls[C]//3rd International Conference on Shot Peening. Garmisch-Partenkirchen:Deutsche Gesellschaft fur Metallkunde, 1987:327-334.
[8] XIE L C, JIANG C H, LU W J, et al. Effect of stress peening on surface layer characteristics of (TiB+TiC)/Ti-6Al-4V composite[J]. Materials and Design, 2012, 33:64-68.
[9] MIAO H Y, LAROSE S, PERRON C, et al. Numerical simulation of the stress peen forming process and experimental validation[J]. Advances in Engineering Software, 2011, 42(11):963-975.
[10] XIAO X D, WANG Y J, ZHANG W, et al. Numerical simulation of stress peen forming with regular indentation[J]. Procedia Engineering, 2014, 81:867-872.
[11] GARIEPY A, CYR J, LEVERS A, et al. Potential applications of peen forming finite element modelling[J]. Advances in Engineering Software, 2012, 52:60-71.
[12] FAUCHEUX P A, GOSSELIN F P, LEVESQUE M. Simulating shot peen forming with eigenstrains[J]. Journal of Materials Processing Technology, 2018, 254:135-144.
[13] MALEKI E, SHERAFATNIA K. Investigation of single and dual step shot peening effects on mechanical and metallurgical properties of 18CrNiMo7-6 steel using artificial neural net-work[J]. International Journal of Materials, Mechanics and Manufacturing, 2016, 4:100-105.
[14] KARATAS C, SOZEN A, DULEK E. Modelling of residual stresses in the shot peened material C-1020 by artificial neural network[J]. Expert Systems with Applications, 2009, 36(2):3514-3521.
[15] SUN L X, LI M Q, LI H M. Prediction model for surface layer microhardness of processed TC17 via high energy shot peening[J]. Transactions of Nonferrous Metals Society of China, 2017, 27:1956-1963.
[16] ZHANG X J, WANG J B, WANG Y J, et al. Prediction of shot peen forming parameters of integral aircraft wing panels[J]. Materials Science Forum, 2006, 532:937-940.
[17] 王伟, 娄相芽, 杨永红, 等. 基于RBF人工神经网络的喷丸成形工艺参数预测方法[J]. 组合机床与自动化加工技术, 2008(8):43-49. WANG W, LOU X Y, YANG Y H, et al. Prediction of shot peening parameters based on the RBF artificial neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2008(8):43-49(in Chinese).
[18] AIOBAID Y F. Shot peening mechanics:experimental and theoretical analysis[J]. Mechanics of Materials, 1995, 19(2-3):251-260.
[19] GARIEPY A, LAROSE S, PERRON C, et al. Shot peening and peen forming finite element modelling-Towards a quantitative method[J]. International Journal of Solids and Structures, 2011, 48(20):2859-2877.
[20] 王永军, 何俊杰, 肖旭东, 等. 大型机翼整体壁板喷丸延展量数值模拟[J]. 锻压技术, 2016, 41(8):63-69. WANG Y J, HE J J, XIAO X D, et al. Numerical simulation on elongation of large integral wing panel after shot peening[J]. Forging & Stamping Technology, 2016, 41(8):63-69(in Chinese).
[21] 李源, 雷丽萍, 曾攀. 弹丸束喷丸有限元模型数值模拟及试验研究[J]. 机械工程学报, 2011, 47(22):43-48. LI Y, LEI L P, ZENG P. Shot stream finite element model for shot peening numerical simulation and its experiment study[J]. Journal of Mechanical Engineering, 2011, 47(22):43-48(in Chinese).
[22] 赖松柏, 陈同祥, 于登云. 整体壁板结构弹塑性弯曲中性层位置分析[J]. 宇航材料工艺, 2012(1):35-37. LAI S B, CHEN T X, YU D Y. Analysis of neutral surface position of integrally stiffened panel in elasto-plastic bending[J]. Aerospace Materials & Technology, 2012(1):35-37(in Chinese).
[23] 李秀莲. 等效截面法求解异质双材料组合梁[J]. 青海大学学报(自然科学版), 2008, 26(6):93-96. LI X L. Equivalent section method for solving heterogeneous two-material composite beams[J]. Journal of Qinghai University(Natural Science Edition), 2008, 26(6):93-96(in Chinese).