针对大型复杂板结构安全评价需要,发展了一种基于压缩感知的金属加筋板结构兰姆波健康监测技术。利用压缩感知技术从稀疏阵列得到的少量检测数据中恢复出加筋板结构中兰姆波的频散特性,并提出了一种将余弦相似度和皮尔森相似度相结合的稀疏阵列兰姆波复合成像方法,以实现加筋板结构中大范围缺陷检测和成像。实验结果表明,压缩感知技术可以恢复出金属加筋板中兰姆波的频率-波数关系,提出的兰姆波复合成像方法能够实现金属加筋板中单缺陷和多缺陷的检测及定位。研究工作为复杂板结构损伤检测提供了一种可行的技术方案。
To meet the needs of safety assessment of large and complex plate structures, a Lamb wave health monitoring technique for stiffened metal plate structures based on compressed sensing is developed. The dispersion characteristics of Lamb waves in stiffened panel structures are recovered from a small amount of testing data obtained from sparse array using compressed sensing technology. To realize large-scale defect detection imaging in stiffened panel structures, a new method of sparse array Lamb wave composite imaging combining cosine similarity with Pearson similarity is proposed. The experimental results show compressed sensing technology can recover the frequency-wavenumber relation of Lamb waves in stiffened plates. And the Lamb wave composite imaging method can detect and locate single and multiple defects in stiffened panels. Research work provides a feasible technical solution for detecting damage of complex plate structure.
[1] MOHAMMAD F H, YEASIN B M, BANIBRATA P, et al. Analytical and experimental investigation of the interaction of Lamb waves in a stiffened aluminum plate with a horizontal crack at the root of the stiffener[J]. Journal of Sound and Vibration, 2018, 431:212-225.
[2] BIAN X, LI Y, FENG H, et al. A location method using sensor arrays for continuous gas leakage in integrally stiffened slates based on the acoustic characteristics of the stiffener[J]. Sensors, 2015, 15(9):24644-24661.
[3] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803. MA B Q, ZHOU Z G. Progress and development trends of composite structures evaluation using noncontact nondestructive testing technology in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1787-1803(in Chinese).
[4] 胡宏伟, 彭凌兴, 周正干, 等. 曲面构件水浸超声检测缺陷定量研究[J]. 航空学报, 2014, 35(11):3166-3173. HU H W, PENG L X, ZHOU Z G, et al. Quantitative research on defect of curved components with immersion ultrasonic testing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3166-3173(in Chinese).
[5] ALLEYNE D N, CAWLEY P. Optimization of Lamb wave inspection techniques[J]. NDT & E International, 1992, 25(1):11-22.
[6] ROSE J L, NAGY P B. Ultrasonic waves in solid media[J]. Journal of the Acoustical Society of America, 2000, 107(4):1807-1808.
[7] PEI N, BOND L J. Higher order acoustoelastic Lamb wave propagation in stressed plates[J]. The Journal of the Acoustical Society of America, 2016, 140(5):3834-3843.
[8] ABBAS M, SHAFIEE M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves[J]. Sensors, 2018, 18(11):3958.
[9] KIM C Y, PARK K J. Mode separation and characterization of torsional guided wave signals reflected from defects using chirplet transform[J]. NDT & E International, 2015, 74:15-23.
[10] MOHAMMAD F H, YEASIN B M, BANIBRATA P, et al. Analytical and experimental investigation of the interaction of Lamb waves in a stiffened aluminum plate with a horizontal crack at the root of the stiffener[J]. Journal of Sound and Vibration, 2018, 431:212-225.
[11] PAVLAKOVIC B, LOWE M, ALLEYNE D, et al. Disperse:A general purpose program for creating dispersion curves[M]. New York:Thompson DO, 1997:185-192.
[12] ZHANG Q, LI B, SHEN M. A measurement-domain adaptive beamforming approach for ultrasound instrument based on distributed compressed sensing:Initial development[J]. Ultrasonics, 2013, 53(1):255-264.
[13] 花少炎, 丁明跃, 尉迟明. 基于压缩感知的超声逆散射成像研究[J]. 北京生物医学工程, 2015, 34(1):24-31. HUA S Y, DING M Y, YUCHI M. Study of the ultrasound inverse scattering imaging based on compressed sensing[J]. Beijing Biomedical Engineering, 2015, 34(1):24-31(in Chinese).
[14] 吕燚, 吴文焘, 李平. 压缩感知在合成发射孔径医学超声成像中的应用[J]. 声学学报, 2013, 38(4):426-432. LV Y, WU W T, LI P. The application of compressed sensing in synthetic transmit aperture medical ultrasound imaging[J]. Acta Acustica, 2013, 38(4):426-432(in Chinese).
[15] 王平, 李娜, 杜炜, 等. 合成孔径压缩感知超声成像中的高效能稀疏字典设计[J]. 声学学报, 2017, 42(6):713-720. WANG P, LI N, DU W, et al. The design of a high efficient sparse dictionary in synthetic transmit aperture of ultrasound imaging[J]. Acta Acustica, 2017, 42(6):713-720(in Chinese).
[16] HARLEY J B, MOURA J M. Data-driven matched field processing for Lamb wave structural health monitoring[J]. Journal of the Acoustical Society of America, 2014, 135(3):1231-1244.
[17] HARLEY J B, SCHMIDT A C, MOURA J M F. Accurate sparse recovery of guided wave characteristics for structural health monitoring[C]//IEEE International Ultrasonics Symposium, 2012:158-161.
[18] HARLEY J B, MOURA J M. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[J]. Journal of the Acoustical Society of America, 2013, 133(5):2732-2745.
[19] GAO F, ZENG L, LIN J, et al. Mode separation in frequency-wavenumber domain through compressed sensing of far-field Lamb waves[J]. Measurement Science and Technology, 2017, 28(7):75004.
[20] ZHAO W, LI M, HARLEY J B, et al. Reconstruction of Lamb wave dispersion curves by sparse representation with continuity constraints[J]. Journal of the Acoustical Society of America, 2017, 141(2):749-749.
[21] ADLER J, PARMRYD I. Quantifying colocalization by correlation:the Pearson correlation coefficient is superior to the Mander's overlap coefficient[J]. Cytometry Part A:Applied Science and Manufacturing, 2010, 77(8):733-742.