为研究高超声速再入飞行器沿弹道的自由扰动运动的稳定性,考虑大气密度随高度的变化和引力梯度,建立了高超声速无动力再入纵向动力学小扰动线性化方程,然后获得转移矩阵和特征方程,在此基础上进行沿弹道的纵向模态分析。利用二次曲线及基于类型函数和形状函数(CST)的方法提出升力式高超声速飞行器气动布局,并采用工程估算方法获得飞行器气动特性数据。针对最大射程、最小射程和跳跃弹道等典型再入弹道进行沿弹道的模态稳定性分析,得到高超声速再入弹道高度模态、沉浮模态和短周期模态稳定性沿弹道的变化特征。从稳定性的角度,对弹道优化提出建议:应避免所设计的弹道产生太大的跳跃,即使是牺牲一些射程上的性能,因为跳跃会使短周期模态和沉浮模态产生更多的不稳定特征根。
To analyze the dynamic stability of hypersonic reentry vehicles along the disturbed trajectory, the linearized longitude dynamics based on small perturbation theory for hypersonic reentry is established in which the gravity grads and the variation of atmospheric density with altitude are both considered. Then the transfer matrix and the characteristic equation are obtained. Based on the results, a longitude mode analysis along the trajectory is carried out. An aerodynamic configuration of a hypersonic reentry vehicle is proposed by using conics and the Class function and Shape function Transformation technique (CST). The aerodynamic characteristic is estimated by the approximate engineering method. A modal stability analysis on typical reentry trajectories is carried out to analyze the maximum range trajectory, minimum range trajectory, and skip trajectory, obtaining the properties of height mode, phugoid mode, and short period mode of hypersonic reentry vehicles. At last, a suggestion for trajectory optimization from the view of longitude dynamic stability is proposed. Despite potential loss of range ability, the design should avoid a large skip in altitude for the designed lifting hypersonic reentry trajectory, because the skip will generate more unstable characteristic roots on short period mode and phugoid mode.
[1] 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2008:175-230. QIAN X F, LIN R X, ZHAO Y N. Missile mechanics[M]. Beijing:Beijing Institute of Technology Press, 2008:175-230(in Chinese).
[2] 埃特肯. 大气飞行动力学[M]. 何植岱, 译. 北京:科学出版社, 1979:319-395. ETKIN B. Dynamics of atmospheric flight[M]. HE Z D, translated. Beijing:Science Press, 1979:319-395(in Chinese).
[3] 张涵信, 袁先旭, 叶友达, 等. 飞船返回舱俯仰振荡的动态稳定性研究[J]. 空气动力学学报, 2002, 20(3):247-258. ZHANG H X, YUAN X X, YE Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3):247-258(in Chinese).
[4] ETKIN B. Longitudinal dynamics of a lifting vehicle in orbital flight[J]. Journal of Aerospace Sciences, 1961, 28(10):779-788.
[5] VINH N X, LAITONE E V. Longitudinal dynamic stability of a shuttle vehicle[C]//AIAA Guidance, Control and Flight Mechanics Conference. Reston, VA:AIAA, 1970.
[6] DONALD T B. National aerospace plane longitudinal long-period dynamics[J]. Journal of Guidance, 1991, 14(1):205-206.
[7] SACHS G, KNOLL A, STICH R. Hypersonic simulator experiments for long-term dynamics flying qualities[C]//AIAA/DGLR Fifth International Aerospace Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 1993.
[8] STICH R, SACHS G, COX T. New longitudinal handling qualities criterion for unstable hypersonic vehicles[C]//AIAA Atmospheric Flight Mechanics Conference Exhibit. Reston, VA:AIAA, 2003.
[9] SACHS G. Thrust/speed effects on long-term dynamics of aerospace planes[J]. Journal of Guidance, 1992:15(4):1050-1053.
[10] ROBERT F S. Altitude stability in supersonic cruising flight:AIAA-1969-0831[R]. Reston, VA:AIAA, 1969.
[11] LAEL V R, DARRYLL J P. Dynamic stability of mission-oriented hypersonic waveriders:AIAA-1999-0385[R]. Reston, VA:AIAA, 1999.
[12] 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学:技术科学, 2014, 44(10):1114-1122. JIA Z A, ZHANG C A, WANG K M, et al. Longitudinal static stability analysis of hypersonic waveriders[J]. Science China:Technological Sciences, 2014, 44(10):1114-1122(in Chinese).
[13] 陈琛, 王鑫, 闫杰. 升力体构型高超声速飞行器模态稳定性分析[J]. 西北工业大学学报, 2010, 28(3):327-331. CHEN C, WANG X, YAN J. Modal analysis of a lift body hypersonic aircraft[J]. Journal of Northwestern Polytechnical University, 2010, 28(3):327-331(in Chinese).
[14] 李锐. 高超声速飞行器轨迹优化及横航向稳定性分析[D]. 南京:南京航空航天大学, 2012. LI R. Trajectory optimization and lateral-directional stability analysis of hypersonic vehicles[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[15] 苏二龙, 罗建军. 高超声速飞行器横侧向失稳非线性分叉分析[J]. 力学学报, 2016, 48(5):1192-1201. SU E L, LUO J J. Nonlinear bifurcation analysis of lateral loss of stability for hypersonic vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5):1192-1201(in Chinese).
[16] 高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12):14-18. GAO Q, LI Q. Lateral-directional stability analysis of hypersonic vehicles of US[J]. Cruising Missiles, 2012(12):14-18(in Chinese).
[17] YE Y D, ZHAO Z L, TIAN H, et al. The stability analysis of rolling motion of hypersonic vehicles and its validation[J]. Science China, Physiscs, Mechanics & Astronomy, 2014, 57(12):2194-2204.
[18] BRENDA M K. A universal parametric geometry representation method-"CST":AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[19] 冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4):546-550. FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica,2012, 30(4):546-550(in Chinese).
[20] 杨肖峰, 唐伟, 桂业伟, 等. 火星探测着陆器气动布局研究[J]. 载人航天, 2015, 21(4):585-589. YANG X F, TANG W, GUI Y W, et al. Study on aerodynamic configuration of mars probe[J]. Manned Spaceflight, 2015, 21(4):585-589(in Chinese).
[21] FENG Y, TANG W, GUI Y W. Optimization of configuration and trajectory for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2014, 32(6):800-805.
[22] 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6):1766-1772. YONG E M, TANG G J, CHEN L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6):1766-1772(in Chinese).