为了解管路注气对补燃循环液氧煤油发动机预燃室煤油离心喷嘴喷注过程稳定性的影响,在大气环境下开展了敞口型离心喷嘴注气时喷注过程稳定性试验。使用注气装置在离心喷嘴的上游供应管路中注入空气,通过高速相机记录管路内的两相流特征和喷嘴喷注过程的振荡特征,采用图像区域亮度分析方法定量评估喷注过程的振荡强度。研究发现:注气能显著改变敞口型离心喷嘴的喷注雾化过程及稳定性特征;注气后雾化液膜破碎距离缩短且喷雾角减小,喷注过程出现明显的振荡并伴随Klystron效应;管路内两相流的气泡尺度较大且切向孔较小时,喷注过程的振荡幅值较大;随着注气量增加,喷注过程的振荡频率降低;气泡尺度及两相流型对离心喷嘴喷注振荡过程的影响与普通气泡雾化喷嘴的显著不同,柱状流型时离心喷嘴喷注过程出现1~3 Hz流量振荡且可能间歇性断流。气泡对切向孔的间歇性堵塞作用可能是喷注过程振荡及Klystron效应的原因。
To understand the stability characteristics of the kerosene swirl injector when gas injected into the feed-line in the pre-burner of staged combustion LOX/kerosene rocket engine, the stability characteristics of open-end swirl injectors with gas injection are investigated experimentally in the atmospheric environment. A gas injection apparatus is designed to inject air into the feed-line of injectors. The two-phase flow processes in the feed-line and the spray processes of the injectors are captured by a high-speed camera. The unsteadiness of the spray processes is evaluated by the image intensity analysis method. It is found that the processes and stability of sprays are significantly changed when the gas injected in the feed-line. The film breakup length and the spray angle decrease and the sprays become unsteady with the Klystron effect. The unsteadiness of the spray is large when the size of bubbles in the feed-line is large and the diameter of tangential orifices of the injectors is small. As the gas-to-liquid ratio increases, the dominant oscillating frequency reduces. The size of the bubbles and the two-phase flow pattern have a significant impact on sprays of swirl injectors different from that of common effervescent atomizers. The frequency of sprays oscillating is about 1-3 Hz when the annular flow pattern is exhibited, showing intermittent flow-stopping. The sprays oscillating and the Klystron effect may induce the periodical block of bubbles to tangential orifices.
[1] LEFEBVRE A. Atomization and sprays[M]. Milton Park:Taylor & Francis, 1989:142-144.
[2] CHIN J, LEFEBVRE A. Design procedure for effervescent atomizers[J]. ASME Transactions Journal of Engineering Gas Turbines & Power, 1993, 117(2):266-271.
[3] SOVANI S, SOJKA P, LEFEBVRE A. Effervescent atomization[J]. Progress in Energy and Combustion Science, 2001, 27(4):483-521.
[4] JEDELSKY J, JICHA M, SLAMA J, et al. Development of an effervescent atomizer for industrial burners[J]. Energy & Fuels, 2009, 23(12):6121-6130.
[5] SHEPARD T. Bubble size effect on effervescent atomization[D]. Minnesota:University of Minnesota, 2011:80-128.
[6] SUN C H, NING Z, QIAO X Q, et al. Measurements of internal flow regime and bubble size in effervescent atomizer[J]. Experimental Thermal and Fluid Science, 2018, 98(4):604-620.
[7] HARRJE D T, REARDON F H. Liquid propellant rocket combustion instability:NASA SP-194[R]. Washington, D.C.:NASA, 1972.
[8] JOBEHDAR M, GADALLAH A, SIDDIQUI K, et al. Investigation of two-phase flow in an effervescent atomizer[C]//Proceedings of the ASME 20144th Joint US-European Fluids Engineering Division Summer Meeting. New York:ASME, 2014.
[9] SHEPARD T, LEE J, YAN B, et al. Parameters affecting bubble formation and size distribution from porous media[J]. Journal of Fluids Engineering, 2016, 138(2):1-8.
[10] 孙春华. 气泡雾化喷射中气液两相作用及射流喷雾的研究[D]. 北京:北京交通大学, 2017:38-53. SUN C H. Study on interactions between gas liquid two phase and jet spray in effervescent sprays[D]. Beijing:Beijing Jiaotong University, 2017:38-53(in Chinese).
[11] 李宗虎. 气液两相流和沸腾传热[M]. 西安:西安交通大学出版社, 2003:14-28. LIN Z H. Gas-liquid two phase flow and boiling heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2003:14-28(in Chinese).
[12] MLKVIK M, STAHLE P, SCHUCHMANN H, et al. Twin-fluid atomization of viscous liquids:The effect of atomizer construction on breakup process, spray stability and droplet size[J]. International Journal of Multiphase Flow, 2015, 77:19-31.
[13] 刘联胜, 吴晋湘, 韩振兴, 等. 气泡雾化喷嘴混合室内两相流型及喷嘴喷雾稳定性[J]. 燃烧科学与技术, 2002, 8(4):353-357. LIU L S, WU J X, HAN Z X, et al. Investigation on the flow pattern in mixing-chamber and stability of spray of effervescent atomizers[J]. Journal of Combustion Science and Technology, 2002, 8(4):353-357(in Chinese).
[14] JEDELSKY J, JICHA M. Unsteadiness in effervescent sprays-measurement and evaluation using combined PIV-PLIF technique[C]//13th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2006.
[15] JEDELSKY J, JICHA M. Unsteadiness in effervescent sprays-a new evaluation method and the influence of operational conditions[J]. Atomization and Sprays, 2008, 19(1):49-83.
[16] LIU M, DUAN Y F, ZHANG T N. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer[J]. Experimental Thermal and Fluid Science, 2010, 34:657-665.
[17] LIU M, DUAN Y F, ZHANG T N, et al. Evaluation of unsteadiness in effervescent spray by analysis of droplet arrival statistics-the influence of fluids properties and atomizer internal design[J]. Experimental Thermal and Fluid Science, 2011, 35:190-198.
[18] EDWARDS C, MARX K. Multi-point statistical structure of the ideal spray. Part Ⅱ:Evaluating steadiness using the interparticle time distribution[J]. Atomization and Spr-ays, 1995, 6(5):475-506.
[19] SUN C H, NING Z, LV M, et al. Time-frequency analysis of acoustic and unsteadiness evaluation in effervescent sprays[J]. Chemical Engineering Science, 2015, 127:115-125.
[20] CASIANO M, HULKA J, YANG V. Liquid-propellant rocket engine throttling:A comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5):897-923.
[21] BAYVEL L, ORZECHOWSKI Z. Liquid atomization[M]. Milton Park:Taylor & Francis, 1993:41-55.
[22] 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴自激振荡特性试验[J]. 航空学报, 2018, 39(9):122189. XUE S J, LIU H J, HONG L, et al. Experiment on self-excited oscillation characteristics of an open-end swirl injector with thick liquid film[J]. Acta Aeronautica et Astronauitca Sinica, 2018, 39(9):122189(in Chinese).
[23] 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6):121988. KANG Z T, WANG Z G, LI Q L, et al. Influence of pressure oscillation on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121988(in Chinese).
[24] KULKARNI A, JOSHI B. Bubble formation and bubble size rise velocity in gas-liquid systems:A review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16):5873-5931.