电子电气工程与控制

螺旋俯冲机动突防的制导律设计

  • 何磊 ,
  • 闫晓东 ,
  • 唐硕
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 陕西省空天飞行器设计技术重点实验室, 西安 710072

收稿日期: 2018-06-17

  修回日期: 2018-10-12

  网络出版日期: 2019-01-04

Guidance law design for spiral-diving maneuver penetration

  • HE Lei ,
  • YAN Xiaodong ,
  • TANG Shuo
Expand
  • 1. School of Astronautics, Northwestern Ploytechnical University, Xi'an 710072, China;
    2. Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710072, China

Received date: 2018-06-17

  Revised date: 2018-10-12

  Online published: 2019-01-04

摘要

针对识别和拦截技术高度发展所带来的突防难题,提出高超声速滑翔飞行器(HGV)螺旋俯冲机动突防的概念,并为此设计了一种基于虚拟滑动目标的自适应比例导引律。首先,通过分析HGV绕目标飞行的运动学特性,建立对数型的螺旋运动模型,以该模型为基础利用曲线渐伸线原理设计虚拟目标的滑动轨迹。然后,采用包含时变附加项的比例导引律追踪虚拟目标,从而实现引导HGV进行螺旋俯冲机动以及对真实目标的打击。接着,为提高虚拟目标的跟踪精度以及抵抗外部干扰的能力,设计了制导参数的闭环非线性自适应律,能根据当前偏差在线选择制导参数值。此外,还分析了满足收敛条件的制导参数的取值范围以及其进入闭环更新的策略。最后,分别针对静止目标和低速移动目标进行数值仿真验证,结果表明所设计的制导律不但能够引导HGV实施螺旋俯冲机动,还能够准确地命中目标。

本文引用格式

何磊 , 闫晓东 , 唐硕 . 螺旋俯冲机动突防的制导律设计[J]. 航空学报, 2019 , 40(5) : 322457 -322457 . DOI: 10.7527/S1000-6893.2019.22457

Abstract

Aiming at the penetration challenge brought by the rapid development of identification and interception technologies, this paper proposes a spiral-diving maneuver concept to improve the penetration capability for Hypersonic Gliding Vehicle (HGV). An adaptive proportional navigation guidance law based on the virtual sliding target is designed to implement this spiral-diving maneuver. First, a logarithmic spiral motion model is constructed by analyzing the lateral kinematic characteristics of HGV flying around the target. The locus of virtual sliding target is designed from this motion model by using the principle of involutes. Then, a proportional navigation guidance law with a time-varying term is adopted to track the virtual sliding target, thereby realizing the spiral-diving maneuver as well as the attack on the real target. To ensure high precision tracking of the virtual target in spiral-diving maneuver, a closed-loop nonlinear updating law is developed with online determination of the guidance parameters. Furthermore, the convergence condition of this updating law and the switching strategy are also theoretically analyzed. Numerical simulations are performed to verify the spiral-diving maneuver and guidance law for the stationary targets and low-speed moving targets. The results show that the proposed guidance law is able to not only achieve the spiral-diving maneuver, but also hit the target accurately.

参考文献

[1] 罗珊. 弹道导弹反拦截机动变轨突防技术研究[D]. 西安:西北工业大学, 2006:1-5. LUO S. Research on anti-intercept maneuvering penetration technology for ballistic missile[D]. Xi'an:Northwestern Polytechnical University, 2006:1-5(in Chinese).
[2] DWIVEDI P N, BHALE P G, BHATTACHARYYA A, et al. Generalized state estimation and model predictive guidance for spiraling and ballistic targets[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1):243-264.
[3] 赵汉元. 飞行器再入动力学与制导[M]. 长沙:国防科技大学出版社, 1997:202-214. ZHAO H Y. Dynamics and guidance of reentry vehicle[M]. Changsha:National University of Defense Technology Press,1997:202-214(in Chinese).
[4] 谢愈, 刘鲁华, 汤国建, 等. 高超声速滑翔飞行器摆动式机动突防弹道设计[J]. 航空学报, 2011, 32(12):2174-2181. XIE Y, LIU L H, TANG G J, et al. Weaving maneuver trajectory design for hypersonic glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2174-2181(in Chinese).
[5] ZARCHAN P. Proportional navigation and weaving targets[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):969-974.
[6] ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston, VA:AIAA, 2012.
[7] RUSNAK I, PELED-EITAN L. Guidance law against spiraling target[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(7):1689-1693.
[8] LI G, ZHANG H, TANG G. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2015, 43:321-328.
[9] OHLMEYER E J. Root-mean-square miss distance of proportional navigation missile against sinusoidal target[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3):563-568.
[10] KIM J, VADDI S S, MENON P K, et al. Comparison between three spiraling ballistic missile state estimators:AIAA-2008-7459[R]. Reston, VA:AIAA, 2008.
[11] YANUSHEVSKY R. Analysis of optimal weaving frequency of maneuvering targets[J]. Journal of Spacecraft and Rockets, 2004, 41(3):477-479.
[12] CHADWICK W R, ZARCHAN P. Interception of spiraling ballistic missiles[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 1995:4476-4483.
[13] 郦苏丹, 任萱, 吴瑞林. 再入弹头的螺旋机动研究[J]. 宇航学报, 2000, 21(4):41-48. LI S D, REN X, WU R L. Research of spiral maneuver of reentrying missile[J]. Journal of Astronautics, 2000, 21(4):41-48(in Chinese).
[14] 王建华, 刘鲁华, 王鹏, 等. 高超声速飞行器俯冲段制导控制一体化设计方法[J]. 航空学报, 2017, 38(3):320328. WANG J H, LIU L H, WANG P, et al. Integrated guidance and control scheme for hypersonic vehicles in dive phase[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):320328(in Chinese).
[15] 曾家有, 赵红超, 潘长鹏. 反舰导弹基于虚拟目标的大空域变轨弹道设计[J]. 航天控制, 2005, 23(1):69-72. ZENG J Y, ZHAO H C, PAN C P. Design of large-space variable trajectory for anti-ship missile based on virtual target[J]. Aerospace Control, 2005, 23(1):69-72(in Chinese).
[16] RAJU P A, GHOSE D. Empirical virtual sliding target guidance law design:An aerodynamic approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1179-1190.
[17] MOZAFFARI M, SAFARINEJADIAN B, BINAZADEH T. Optimal guidance law based on virtual sliding target[J]. Journal of Aerospace Engineering, 2017, 30(3):1-11.
[18] HU Q, HAN T, XIN M. New impact time and angle guidance strategy via virtual target approach[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8):1755-1765.
[19] HE L, YAN X D. Adaptive terminal guidance law for spiral-diving maneuver based on virtual sliding targets[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7):1589-1599.
[20] LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):269-278.
[21] 张汝川, 顾文锦, 赵红超. 基于主动螺旋变轨的三维末制导律研究[J]. 兵工学报, 2009, 30(6):720-726. ZHANG R C, GU W J, ZHAO H C. Research on 3D terminal guidance laws based on actively self-homing spiral variable trajectory[J]. Acta Armamentarii, 2009, 30(6):720-726(in Chinese).
[22] 胡锡精, 黄雪梅. 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012, 33(3):508-519. HU X J, HUANG X M. Three-dimensional circular guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):508-519(in Chinese).
[23] TSALIK R, SHIMA T. Inscribed-angle guidance against moving targets[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(12):3211-3225.
[24] TSALIK R, SHIMA T. Inscribed angle guidance[J] Journal of Guidance, Control, and Dynamics, 2015, 38(1):30-40.
[25] VINH N X. Flight mechanics of high-performance aircraft[M]. Cambridge:Cambridge University Press, 1993:22-25.
[26] 吴大任. 微分几何讲义[M]. 修订版. 北京:高等教育出版社, 2014:110-115. WU D R. Lectures on differential geometry[M]. Revised edition. Beijing:Higher Education Press, 2014:110-115(in Chinese).
[27] 邓帆, 任怀宇, 李绪国, 等. 采用不同气动控制舵面的临近空间高超声速滑翔飞行器舵效研究[J]. 空气动力学学报, 2014, 32(2):240-245. DENG F, REN H Y, LI X G, et al. Rudder effect of near-space hypersonic gliding vehicle with different control surfaces[J]. Acta Aerodynamica Sinica, 2014, 32(2):240-245(in Chinese).
[28] KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transaction on Aerospace and Electronic Systems, 1998, 34(1):277-288.
文章导航

/