针对一种变形式四旋翼陆空两栖机器人,研究空陆转域飞行控制方法,为实现陆空机器人从空中到地面的连续机动奠定了基础。建立了等效于变形式四旋翼陆空两栖机器人的飞行及转域系统结构模型和动力学模型,针对转域变形过程中转动惯量的改变及复杂飞行环境中负载变化和机体质量受损问题,在设计了基于线性二次型调节器(LQR)算法的姿态控制器和基于比例-积分-微分(PID)算法的高度控制器基础上,设计加入模型参考自适应系统(MRACS)解决模型参数不确定性问题。利用Adams/MATLAB联合仿真,首先得到空陆转域变形角度的极限值,然后对比仿真有无自适应补偿器的控制效果验证了该控制方法的高效性。研制了转域飞行样机,对空陆转域变形角度极限值和飞行控制方法进行了试验验证。
The flight control method for the air-land transfer in a new metamorphic air-land amphibious vehicles is studied, laying the foundation for the continuous maneuver from air to land for air-land amphibious vehicles. Structural model and dynamic model, which are equivalent to the metamorphic air-land amphibious vehicles, are built. To solve the variations of the moment of inertia and the load in the area transfer and the complex environment, Model Reference Adaptive Control System (MRACS) is applied to compensate the uncertainty of the model based on Linear Quadratic Regulaton (LQR) attitude controller and PID height controller. The extreme value of air-land transfer deformation angle is obtained and the effectiveness of this control strategy is verified by using the Adams/MATLAB co-simulation. The transfer flight prototype is developed and experiments are carried out to test its control method and the extreme value.
[1] 李涛, 魏强, 付龙, 等. 基于四旋翼驱动的两栖机器人设计与分析[J]. 机械设计, 2017, 34(5):6-12. LI T, WEI Q, FU L, et al. Design and analysis of an amphibious robot based on four-rotor[J]. Journal of Machine Design, 2017, 34(5):6-12(in Chinese).
[2] 王正杰, 马建, 朱航, 等. 陆空两栖机器人飞行控制系统设计[J]. 北京理工大学学报, 2015, 35(12):257-1261. WANG Z J, MA J, ZHU H, et al. Control of an air-ground amphibious vehicle flight system[J]. Transactions of Beijing Institute of Technology, 2015, 35(12):1257-1261(in Chinese).
[3] 马建. 陆空两栖机器人飞行系统设计[D]. 北京:北京理工大学, 2015. MA J. Flight system design of an air-ground vehicle[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese).
[4] KOSSETT A, D'SA R, PURVEY J, et al. Design of an improved land/air miniature robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2010:632-637.
[5] SALIH A L, MOGHAVVEMI M, HAIDER A F M, et al. Flight PID controller design for a UAV quadrotor[J]. Scientific Research & Essays, 2010, 5(23):3660-3667.
[6] GONZALEZ-VAZQUEZ S, MORENO-VALENZUELA J. A new nonlinear PI/PID controller for quadrotor posture regulation[C]//Electronics, Robotics and Automotive Mechanics Conference. Piscataway, NJ:IEEE Press, 2010:642-647.
[7] ERGINER B, ALTUĞ E. Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle[J]. International Journal of Control Automation & Systems, 2012, 10(1):61-70.
[8] DIAO C, XIAN B, YINQ, et al. A nonlinear adaptive control approach for quadrotor UAVs[C]//Control Conference. Piscataway, NJ:IEEE Press, 2011:223-228.
[9] VOOS H. Nonlinear control of a quadrotor micro-UAV using feedback-linearization[C]//IEEE International Conference on Mechatronics. Piscataway, NJ:IEEE Press, 2009:1-6.
[10] MADANI T, BENALLEGUE A. Backstepping control for a quadrotor helicopter[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007:3255-3260.
[11] 梁雪慧, 李景涛, 党媛媛. 四旋翼飞行器姿态稳定自适应控制研究[J]. 计算机仿真, 2017, 34(8):75-79. LIANG X H, LI J T, DANG Y Y. Research on adaptive control of four rotor aircraft attitude stabilization[J]. Computer Simulation, 2017, 34(8):75-79(in Chinese).
[12] 丁少宾, 肖长诗, 刘金根, 等. X型四旋翼无人机建模及四元数控制[J]. 系统仿真学报, 2015, 27(12):3057-3062. DING S B, XIAO C S, LIU J G, et al. Modeling and quaternion control of X-type quadrotor[J]. Journal of System Simulation, 2015, 27(12):3057-3062(in Chinese).
[13] 高正. 直升机飞行动力学[M]. 北京:科学出版社, 2003. GAO Z. Flight dynamics of helicopter[M]. Beijing:Science Press, 2003(in Chinese).
[14] 邓正隆. 惯性导航原理[M].哈尔滨:哈尔滨工业大学出版社, 1994. DENG Z L. Principle of intertial navigation[M]. Harbin:Harbin Institute of Technology Press, 1994(in Chinese).
[15] 李瑞琪, 王洪福, 李瑞雪, 等. 基于模型参考自适应的四旋翼飞行器控制[J]. 计算机测量与控制, 2013, 21(12):3260-3263. LI R Q, WANG H F, LI R X, et al. Contolling quadrotor vehicles based on model reference adaptation control[J]. Computer Measurement & Control, 2013, 21(12):3260-3263(in Chinese).
[16] PALUNKO I, FIERRO R. Adaptive control of a quadrotor with dynamic changes in the center of gravity[J]. 2011, 44(1):2626-2631.
[17] 高青, 袁亮, 吴金强. 基于新型LQR的四旋翼无人机姿态控制[J]. 制造业自动化, 2014(10):13-16. GAO Q, YUAN L, WU J Q. Attitude control of a quadrotor UAV based on new LQR[J]. Manufacturing Automation, 2014(10):13-16(in Chinese).
[18] SALIH A L, MOGHAVVEMI M, MOHAMED H A F, et al. Modelling and PID controller design for a quadrotor unmanned air vehicle[C]//IEEE International Conference on Automation, Quality and Testing, Robotics. Piscataway, NJ:IEEE Computer Society, 2010:1-5.
[19] MOONUMCA P, YAMAMOTO Y, DEPAIWA N. Adaptive PID for controlling a quadrotor in a virtual outdoor scenario:Simulation study[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2013:1080-1086.
[20] 张忠民, 丛梦苑. 基于线性二次调节器的四旋翼飞行器控制[J]. 应用科技, 2011, 38(5):38-42. ZHANG Z M, CONG M Y. Controlling quadrotor based on linear quadratic regulator[J]. Applied Science and Technology, 2011, 38(5):38-42(in Chinese).
[21] MSC Software Corporation. Adams 2013/Tire user's manual[EB/OL]. (2012-12-23)[2018-09-19]. http://www.mscsoftware.com.
[22] 胡锦添, 舒怀林. 基于Adams与Matlab的四旋翼飞行器控制仿真[J]. 自动化与信息工程, 2012(5):25-28. HU J T, SHU H L. Simulation on quadcopter control based on Adams and Matlab[J]. Automation & Information Engineering, 2012(5):25-28(in Chinese).