Based on the idea of indirect method, an implicit shooting method is derived to solve the optimal Lunar soft landing trajectory. Firstly, a normalization system model of Lunar soft landing trajectory is established. Secondly, based on the Pontryagin's maximum principle, the optimization of Lunar soft landing trajectory is converted into a Two-Point Boundary Value Problem (TPBVP) of satisfying the necessary conditions for optimality. A new time variable is adopted, and then the terminal time-free TPBVP is changed into terminal time-fixed TPBVP. Moreover, the terminal time is considered as state variable and the value of the Hamiltonian function in terminal time is introduced as an implicit terminal condition. Finally, an implicit shooting method is proposed to solve the TPBVP with implicit terminal condition. The simulation results show that the proposed method has better convergence speed and higher optimization precision than the direct method and the hybrid method, achieving the goal of optimal fuel consumption in Lunar soft landing process. Meanwhile, the optimal Lunar soft landing trajectory with different engine thrusts is studied by this method, obtaining the optimal thrust-weight ratio with lowest fuel consumption. This can provide references for the engine selection of Lunar lander descent stage.
[1] MAKUSHENKO Y, MURTAZIN R, DERECHIN A,et al. The cislunar spaceport:An effective approach for the crew delivery to the lunar surface[C]//68th International Astronautical Congress (IAC), 2017.
[2] LI C L, LIU J J, REN X, et al. The Chang'e 3 mission overview[J]. Space Science Reviews, 2015, 190(1-4):85-101.
[3] LEE A Y.Fuel-efficient descent and landing guidance logic for a safe lunar touchdown[C]//AIAA Guidance,Navigation, and Control Conference. Reston, VA:AIAA, 2011.
[4] NASA. NASA's exploration systems architecture study:NASA-TM-2005-214062[R]. Washington, D.C.:NASA,2005.
[5] LI Z Y, LI H J. Lunar soft landing trajectory optimization methods[C]//International Conference on Cyberspace Technology, 2014.
[6] 张建辉, 张峰. 月球软着陆轨道优化方法比较研究[J]. 工程数学学报, 2012, 29(3):355-365. ZHANG J H, ZHANG F. Research on trajectory optimization of lunar soft landing[J]. Chinese Journal of Engineering Mathematics, 2012, 29(3):355-365(in Chinese).
[7] 王大轶, 李铁寿, 马兴瑞. 月球最优软着陆两点边值问题的数值解法[J]. 航天控制, 2000(3):44-49. WANG D Y, LI T S, MA X R. Numerical solution of TPBVP in optimal lunar soft landing[J]. Aerospace Control, 2000(3):44-49(in Chinese).
[8] 孙军伟, 乔栋, 崔平远. 基于SQP方法的常推力月球软着陆轨道优化方法[J]. 宇航学报, 2006, 27(1):99-102. SUN J W, QIAO D, CUI P Y. Study on the optimal trajectories of lunar soft landing with fixed-thrust using SQP method[J]. Journal of Astronautics, 2006, 27(1):99-102(in Chinese).
[9] TU L H, YUAN J P, LUO J J, et al. Lunar soft landing rapid trajectory optimization using direct collocation method and nonlinear programming[C]//The Second International Conference on Space Information Technology, 2007.
[10] 朱建丰, 徐世杰. 基于自适应模拟退火遗传算法的月球软着陆轨道优化[J]. 航空学报, 2007, 28(4):806-812. ZHU J F, XU S J. Optimization of lunar soft landing trajectory based on adaptive simulated annealing genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):806-812(in Chinese).
[11] 段佳佳, 徐世杰, 朱建丰. 基于蚁群算法的月球软着陆轨迹优化[J]. 宇航学报, 2008, 29(2):476-481. DUAN J J, XU S J, ZHU J F. Optimization of lunar soft landing trajectory based on ant colony algorithm[J]. Journal of Astronautics, 2008, 29(2):476-481(in Chinese).
[12] 彭祺擘, 李海阳, 沈红新. 基于高斯-伪谱法的月球定点着陆轨道快速优化设计[J]. 宇航学报, 2010, 31(4):1012-1016. PENG Q B, LI H Y, SHEN H X. Rapid lunar exact-landing trajectory optimization via gauss pseudospectral method[J]. Journal of Astronautics, 2010, 31(4):1012-1016(in Chinese).
[13] PARK B G, TAHK M J. Three-dimensional trajectory optimization of soft lunar landings from the parking orbit wIth consideratIons of the landing site[J]. International JournaI of Control, Automation and Systems, 2011, 9(6):1164-1172.
[14] ZHANG J H, PENG Q B. Lunar soft landing trajectory optimization by a chebyshev pseudospectral method[C]//IEEE InternationaI Conference on Computer Science and Automation Engjneering. Piscataway, NJ:IEEE Press, 2011.
[15] 单永正, 段广仁, 吕世良. 月球探测器软着陆的最优控制[J]. 光学精密工程, 2009, 17(9):2153-2158. SHAN Y Z, DUAN G R, LV S L. Optimal control for soft landing of lunar probe[J]. Optics and Precision Engineering, 2009, 17(9):2153-2158(in Chinese).
[16] 曹涛, 董长虹. 基于组合优化策略的月球软着陆最优轨道设计[J]. 北京航空航天大学学报, 2012, 38(11):1537-1541. CAO T, DONG C H. Optimization of lunar soft landing trajectory based on combinational algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1537-1541(in Chinese).
[17] 彭坤, 果琳丽, 向开恒, 等. 基于混合法的月球软着陆轨迹优化[J]. 北京航空航天大学学报, 2014, 40(7):910-915. PENG K, GUO L L, XIANG K H, et al. Optimization of lunar soft landing trajectory based on hybrid method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7):910-915(in Chinese).
[18] 赵吉松, 谷良贤, 潘雷. 月球最优软着陆两点边值问题的数值解法[J]. 中国空间科学技术, 2009, 29(4):21-27. ZHAO J S, GU L X, PAN L. Numerical solution of TPBVP for optimal lunar soft landing[J]. Chinese Space Science and Technology, 2009, 29(4):21-27(in Chinese).
[19] TAPLEY B D,WILLIAMSON W E.Comparison of linear and riccati equations used to solve optimal control problems[J]. AIAA Journal, 1972, 10(9):1154-1159.
[20] 肖尧, 阮晓钢, 魏若岩. 基于3维模型的月球表面软着陆燃耗最优制导方法[J]. 上海交通大学学报, 2017, 51(6):734-740. XIAO Y, RUAN X G, WEI R Y. An optimal fuel guidance law for lunar soft-landing based on three-dimensional dynamic model[J]. Journal of Shanghai Jiao Tong University, 2017, 51(6):734-740(in Chinese).
[21] ASCHER U, RUSSELL R D. Reformulation of boundary value problems into "standard" form[J]. SIAM Review, 1981, 23(2):238-254.
[22] 张光澄. 最优控制计算方法[M]. 成都:成都科技大学出版社, 1991:113-117. ZHANG G C. Computational method of optimal control problems[M]. Chengdu:Chengdu University of Science and Technology Press, 1991:113-117(in Chinese).