流体力学与飞行力学

跨声速风洞斜孔壁非线性流动试验

  • 刘光远 ,
  • 张林 ,
  • 陈德华 ,
  • 林学东 ,
  • 贾智亮
展开
  • 1. 中国空气动力研究与发展中心空气动力学国家重点试验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心高速空气动力研究所, 绵阳 621000

收稿日期: 2018-06-29

  修回日期: 2018-10-24

  网络出版日期: 2018-12-06

基金资助

国家自然科学基金(11802328);空气动力学国家重点实验室基金(SKLA2017-3-2);中国空气动力研究与发展中心风雷创新基金(FLYIF20160014)

Experiment on nonlinear flow near perforated wall with slanted holes in transonic wind tunnel

  • LIU Guangyuan ,
  • ZHANG Lin ,
  • CHEN Dehua ,
  • LIN Xuedong ,
  • JIA Zhiliang
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-06-29

  Revised date: 2018-10-24

  Online published: 2018-12-06

Supported by

National Natural Science Foundation of China (11802328); State Key Laboratory of Aerodynamics Foundation (SKLA2017-3-2); FengLei Youth Innovation Fund of CARDC (FLYIF20160014)

摘要

为分析跨声速风洞斜孔壁近壁区域的流动特性,评估气流偏角-压力系数的非线性关联,在0.6 m跨超声速风洞中开展了基于七孔探针的流动特性测量试验。通过气流偏角和压力系数分布分析了斜孔壁流动的差阻特性,以及马赫数、模型升力对斜孔壁流动的影响,最后基于试验结果发展了计算斜孔壁特性参数的微分法,并与经验方法结果进行对比。结果表明,斜孔壁流动呈现出明显的差阻性和非线性,在负压差范围内,近壁流动仍以出流为主;高亚声速时,空风洞模型区孔壁流动特性趋于实壁;安装模型后,随着升力的增大,升力面对应的孔壁区域流动向入流发展,孔壁流动特性趋于开口边界。

本文引用格式

刘光远 , 张林 , 陈德华 , 林学东 , 贾智亮 . 跨声速风洞斜孔壁非线性流动试验[J]. 航空学报, 2019 , 40(5) : 122497 -122497 . DOI: 10.7527/S1000-6893.2018.22497

Abstract

To analyze the characteristics of the flow near the transonic perforated wall with slanted holes and to evaluate the nonlinear relationship of flow angle and pressure coefficient, an experiment on flow characteristics is conducted in the 0.6 m transonic and supersonic wind tunnel using seven-hole probe. The differential resistance of flow in perforated wall region, as well as the influence of Mach number and model lift are analyzed using distributions of flow angle and pressure coefficient. Finally, based on the experimental results, a differential method for calculating the porosity parameter of perforated wall with slanted holes is developed and compared with the classical methods. The results indicate that the flow near perforated wall with slanted holes has significant differential resistance and nonlinearity. In the range of negative pressure difference, the flow near the wall is still dominated by outflow. At high subsonic speeds, the perforated wall flow characteristics tend to be solid in the model area for the empty tunnel condition. With the model installed, perforated wall flow tends to enhance the inflow as the lift increases in the opposite area of lift surface, and the perforated wall flow characteristics tend to be open boundaries.

参考文献

[1] GOETHE B H. Transonic wind tunnel testing[M]. New York:Dover Publication, Inc., 2007:12-17.
[2] ULBRICH N, BOONE A. Determination of the wall boundary condition of the NASA AMES 11ft transonic wind tunnel:AIAA-2001-1112[R]. Reston, VA:AIAA, 2001.
[3] ULBRICH N. The application of panel method code ANTARES to wind tunnel wall problems:AIAA-2002-0307[R]. Reston, VA:AIAA, 2002.
[4] 钟世东, 李巍, 苏继川, 等. 三种跨声速洞壁干扰修正方法及其在小展弦比飞翼标模试验中的应用[J]. 空气动力学学报, 2016, 34(1):113-118. ZHONG S D, LI W, SU J C, et al. Three types of transonic wind tunnel wall interference correction method and their application on low aspect ratio flying wing calibration model[J]. Acta Aerodynamica Sinica, 2016, 34(1):113-118(in Chinese).
[5] 刘光远, 魏志, 陈德华, 等. 跨声速风洞槽壁干扰评估与修正技术的应用[J]. 航空学报, 2018, 39(2):73-82. LIU G Y, WEI Z, CHEN D H, et al. Application of slotted wall interference assessment and correction technique in transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):73-82(in Chinese).
[6] SRINIVASACHARYA D, SURENDER O. Non-Darcy natural convection from a vertical plate with a uniform wall temperature and concentration in a doubly stratified porous medium[J]. Journal of Applied Mechanics & Technical Physics, 2015, 56(4):590-600.
[7] FRINK N T, BONHAUS D L, VATSA V N, et al. A boundary condition for simulation of flow over porous surfaces[J]. Journal of Aircraft, 2003, 40(4):2001-2412.
[8] BETYAEV S K. Flow in the working section of a transonic wind tunnel[J]. Journal of Engineering Physics & Thermophysics, 2011, 84:402-407.
[9] CHAN Y Y. Analysis of boundary layers on perforated walls of transonic wind tunnels[J]. Journal of Aircraft, 1981, 18(6):469-473.
[10] DOERFFER P P, BOHNING R. Modelling of perforated plate aerodynamics performance[J]. Aerospace Science & Technology, 2000, 4(8):525-534.
[11] NEYLAND V, BOSNIAKOV S, GLAZKOV S, et al. Conception of electronic wind tunnel and first results of its implementation[J]. Progress in Aerospace Sciences, 2001, 37(2):121-145.
[12] IVANOV A I. An experimental study of gas flow near the perforated walls of a transonic wind tunnel[J]. Fluid Mechanics Soviet Research, 1988, 17(4):31-37.
[13] GOFFERT B, ORTEGA M A, FILHO J B. Wall ventilation effects upon the flow about an airfoil in a transonic wind tunnel[J]. Experimental Techniques, 2014, 40(2):1-21.
[14] GOFFERT B, ORTEGA M A. Numerical study of wall ventilation in a transonic wind tunnel[J]. Journal of Aerospace Technology & Management, 2015, 7(1):81-92.
[15] SEMENOV A V, SEMENOV O K. Finite span wing interference in test section with solid side and perforated horizontal walls[J]. TsAGI Science Journal, 1986, 17(3):121-125.
[16] GLAZKOV S A, GORBUSHIN A R, IVANOV A I, et al. Recent experience in improving the accuracy of wall interference corrections in TSAGI T-128 wind tunnel[J]. Progress in Aerospace Sciences, 2001, 37(3):263-298.
[17] RASSOULINEJAD S M, ABBASBANDY S, ALSULAMI H H. Analytical flow study of a conducting Maxwell fluid through a porous saturated channel at various wall boundary conditions[J]. European Physical Journal Plus, 2014, 129(8):1-10.
[18] CRITES R C. Modeling the ventilated wind tunnel wall:AIAA-1992-0035[R]. Reston, VA:AIAA, 1992.
[19] KRAFT E M, RITTER A, LASTER M L. Advances at AEDC in treating transonic wind tunnel wall interference[C]//15th ICAS Congress. London:ICAS, 1986:748-769.
[20] HARLOFF G J, SMITH G E. Supersonic-inlet boundary-layer bleed flow[J]. AIAA Journal, 1996, 34(4):778-785.
[21] AKATSUKA J, WATANABE Y, MURAKAMI A, et al. Porous bleed model for boundary condition of CFD analysis:AIAA-2006-3682[R]. Reston, VA:AIAA, 2006.
[22] NAMBU T, HASHIMOTO A, AOYAMA T, et al. Analysis and modeling of flow through wind tunnel porous wall:AIAA-2010-4858[R]. Reston, VA:AIAA, 2010.
[23] NAMBU T, HASHIMOTO A, KEⅡCHI M, et al. Numerical analysis of wind tunnel wall interference on two-dimensional airfoil by new porous wall model:AIAA-2012-3229[R]. Reston, VA:AIAA, 2012.
[24] HASHIMOTO A. Transonic wind tunnel simulation with porous wall and support devices:AIAA-2010-4201[R]. Reston, VA:AIAA, 2010.
[25] NAMBU T, HASHIMOTO A, UENO M, et al. Evaluation of wall-interference correction method using numerical analysis and porous wall model[J]. Journal of Aircraft, 2014, 52(1):226-234.
[26] 周长海. 开孔壁透气规律的数值模拟[J]. 气动研究与实验, 1996, 13(1):15-20. ZHOU C H. Numerical simulation of ventilated flow mechanics of perforated walls[J]. Aerodynamic Research and Experiment, 1996, 13(1):15-20(in Chinese).
[27] 周长海. 用Navier-Stokes方程解提供的开孔壁边界条件求洞壁干扰修正[J]. 气动研究与实验, 1995, 12(3):1-14. ZHOU C H. Wall interference correction using boundary conditions of perforated walls provided by solutions of Navier-Stokes equations[J]. Aerodynamic Research and Experiment, 1995, 12(3):1-14(in Chinese).
[28] 曹世坤. 跨声速风洞开孔壁壁面流动特性研究[D]. 南京:南京航空航天大学, 2015:17-18. CAO S K. Investigation of flow characteristics in transonic wind tunnel with porous wall[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2015:17-18(in Chinese).
[29] 李鸿岩, 王祥云, 杨希明, 等. 小展弦比飞翼标模FL-2风洞跨声速开孔壁干扰特性修正研究[J]. 空气动力学学报, 2016, 34(1):131-137. LI H Y, WANG X Y, YANG X M, et al. Transonic porous wall interference characteristics of the low aspect ratio flying wing model in FL-2 wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):131-137(in Chinese).
[30] 刘光远, 王瑞波, 郭秋亭, 等. 2.4 m跨声速风洞壁板参数对核心流均匀性的影响[J]. 航空学报, 2015, 36(9):2930-2938. LIU G Y, WANG R B, GUO Q T, et al. Wall parameters influence on centerline flow uniformity in 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2930-2938(in Chinese).
[31] 刘琴, 陈志强, 申江, 等. 利用M1.4喷管和开孔壁试验段实现低超声速流场试验研究[J]. 实验流体力学, 2011, 25(1):84-87. LIU Q, CHEN Z Q, SHEN J, et al. Experimental research of low supersonic flow field for M1.4 nozzle and perforated wall test section[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1):84-87(in Chinese).
[32] 丛成华, 刘琴, 张志峰, 等. 专用跨声速风洞开孔壁试验段设计数值模拟[J]. 航空学报, 2012, 33(6):1014-1019. CONG C H, LIU Q, ZHANG Z F, et al. Numerical simulation of design of transonic wind tunnel perforated test section[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1014-1019(in Chinese).
[33] NEILAND V M. Optimum porosity of wind tunnel walls at low supersonic velocities[J]. Fluid Dynamics, 1989, 24(4):652-655.
文章导航

/