流体力学与飞行力学

一种可变流量系数的通气短舱匹配方法

  • 闫海津 ,
  • 杜玺
展开
  • 中国商飞北京民用飞机技术研究中心 民用飞机设计数字仿真技术北京市重点实验室, 北京 102211

收稿日期: 2018-05-29

  修回日期: 2018-06-25

  网络出版日期: 2018-12-06

A matching method for variable mass flow ratio for through-flow nacelle

  • YAN Haijin ,
  • DU Xi
Expand
  • Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design, Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102211, China

Received date: 2018-05-29

  Revised date: 2018-06-25

  Online published: 2018-12-06

摘要

要获得与动力短舱流量系数(MFR)一致的通气短舱,可在飞机气动设计和风洞试验过程中使用通气短舱(TFN)代替动力短舱(PN)模拟发动机短舱效应和短舱进气,以简化设计流程和降低试验成本。在研究流量系数变化对短舱和进气道气动特性影响时,需要匹配多种不同流量系数的通气短舱方案,本文在保持短舱外罩和进气道外形不变的条件下,在短舱内增加锥形堵块,通过调整堵锥的位置可快速获得不同流量系数的通气短舱,相较传统设计通气内涵匹配流量系数的方式效率更高。应用所提出的思路设计的独立通气短舱风洞试验方案得到了验证,实测流量系数与设计值吻合良好,证明了方法的可行性。

本文引用格式

闫海津 , 杜玺 . 一种可变流量系数的通气短舱匹配方法[J]. 航空学报, 2018 , 39(12) : 122379 -122379 . DOI: 10.7527/S1000-6893.2018.22379

Abstract

To simplify the design and reduce the cost of the wind tunnel test, the Mass Flow Ratio (MFR) of Through-Flow Nacelle (TFN) should be matched with the Powered Nacelle (PN) which can be simulated by using the TFN instead of the PN in the aircraft aerodynamic design and the wind tunnel test. However, when studying the TFN aerodynamic characteristics under different MFRs, specific TFN designs need to be carried out to match the MFR. In this paper, while maintaining the nacelle outside cover and intake shape unchanged, a conical plug is added in the TFN and by adjusting the positions of the conical plug, different MFRs can be acquired faster. This method is more efficient compared with the traditional method. The isolated nacelle wind tunnel using the designed method is tested, and the test results well match with the design results, proving the feasibility of adding a conical plug in the TFN.

参考文献

[1] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[2] MERN J, AGARWAL R. Numerical study of three-stream nozzle exhaust flow from a simplified model of a turbofan nacelle:AIAA-2014-4013[R]. Reston, VA:AIAA, 2014.
[3] KIM S M, YANG S S, LEE D S, et al. Three-dimensional flow calculation around/through isolated nacelle with an actuator disk modeling:AIAA-1999-2668[R]. Reston, VA:AIAA, 1999.
[4] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[5] 乔磊, 白俊强, 华俊, 等. 大涵道比翼吊发动机喷流气动干扰研究[J]. 空气动力学学报, 2014, 32(2):433-438. QIAO L, BAI J Q, HUA J, et al. Interference effects of wing-mounted high bypass ratio nacelle with engine power[J]. Acta Aerodynamica Sinica, 2014, 32(2):433-438(in Chinese).
[6] 龚志斌, 李杰, 蒋胜矩, 等. 发动机位置对大型运输机动力增升效能的影响研究[J]. 西北工业大学学报, 2015, 33(4):560-565. GONG Z B, LI J, JIANG S J, et al. Numerical investigation of the influence of engine position on powered high-lift effects for large transport aircraft[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):560-565(in Chinese).
[7] HILL G A, KANDIL O A. Aerodynamic investigation of an advanced over-the-wing nacelle transport aircraft configuration:AIAA-2007-0670[R]. Reston, VA:AIAA, 2007.
[8] SAITOH T, KIM H J, TAKENAKA K, et al. Multi-point design of wing-body-nacelle-pylon configuration:AIAA-2006-3461[R]. Reston, VA:AIAA, 2006.
[9] 胡仞与, 张东晕, 施永毅. 民机低速风洞试验通气发房设计[J]. 民用飞机设计与研究, 2014(4):7-9. HU R Y, ZHANG D Y, SHI Y Y. Design of through-flow nacelle for low-speed wind tunnel testing of civil aircraft[J]. Civil Aircraft Design and Research, 2014(4):7-9(in Chinese).
[10] 黑少华, 江声兰. 民用大涵道比发动机短舱阻力数值研究[J]. 沈阳航空航天大学学报, 2017, 34(4):48-54. HEI S H, JIANG S L. Numerical simulation on nacelle drag of turbofan engine with a large bypass ratio[J]. Journal of Shenyang Aerospace University, 2017, 34(4):48-54(in Chinese).
[11] ARIZONO H, KHEIRANDISH H R, NAKAMICHI J, et al. Transonic flutter simulation for wing-pylon-nacelle configuration using Navier-Stokes equations:AIAA-2008-1897[R]. Reston, VA:AIAA, 2008.
[12] 贾洪印, 马明生, 吴晓军, 等. 发动机进排气效应对民机构型气动特性影响[J]. 航空动力学报, 2017, 32(8):1900-1910. JIA H Y, MA M S, WU X J, et al. Study on aerodynamic characteristics of different types of civil aircrafts with engine air intake and exhaust[J]. Journal of Aerospace Power, 2017, 32(8):1900-1910(in Chinese).
[13] 郭少杰, 周培培, 王斌, 等. 动力效应对民机起飞构型气动特性影响的数值研究[J]. 航空动力学报, 2016, 31(7):1638-1648. GUO S J, ZHOU P P, WANG B, et al. Numerical investigation for influence of powered effect on aerodynamic characteristics of civil aircraft take-off configuration[J]. Journal of Aerospace Power, 2016, 31(7):1638-1648(in Chinese).
[14] GOLDEN D P, BARBER T J, CHIN W C. An axisymmetric nacelle and turboprop inlet analysis with flow-through and power simulation capabilities:AIAA-1982-0256[R]. Reston, VA:AIAA, 1982.
[15] 郭少杰, 王斌, 杨中艳, 等. 动力效应对民机高速抖振特性影响数值研究[J]. 航空工程进展, 2016, 7(3):301-308. GUO S J, WANG B, YANG Z Y, et al. Numerical investigation for the effects of power of engine on butter characteristics of a civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2016, 7(3):301-308(in Chinese).
[16] TOUBIN H, SALAH E D I, MEHEUT M. Multipoint aerodynamic high fidelity shape optimization of an isolate engine nacelle:AIAA-2014-0903[R]. Reston, VA:AIAA, 2014.
[17] JOO J, TILLMAN T G, LIN R. Nacelle external drag prediction using computational fluid dynamics:AIAA-2012-3998[R]. Reston, VA:AIAA, 2012.
[18] 薛帮猛, 张文升, 孙学卫, 等. 动力干扰下宽体客机机翼多目标优化设计[J/OL]. 航空学报, 2019, 40(1):522381[2018-05-25].http://kns.cnki.net/kcms/detail/11.1929.V.20180713.1016.010.html. XUE B M, ZHANG W S, SUN X W, et al. Multi-objective wing shape optimization of wide-body civil aircraft in wing-body-pylon-powered nacelle configuration[J/OL]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522381[2018-05-25].http://kns.cnki.net/kcms/detail/11.1929.V.20180713.1016.010.html (in Chinese).
[19] KNORATH R, GEISLER R, AGOCS J, et al. Tracking the nacelle vortex above aircraft wing in the ETW at real Mach and Reynolds numbers by means of PIV:AIAA-2015-1560[R]. Reston, VA:AIAA, 2015.
[20] MAJIC F, DFRAIMSSON G, O'REILLY C. Aerodynamic performance of the adaptive nacelle inlet:AIAA-2015-3163[R]. Reston, VA:AIAA, 2015.
[21] LIN Y J, ROBINSON T, EARLY J, et al. Implementation of Menter's transition model on an isolated natural laminar flow nacelle[J]. AIAA Journal, 2011, 49(4):824-835.
[22] KANAZAKI M, YOKOKAWA Y, MURAYAMA M, et al. Efficient design exploration of nacelle chine installation in wind tunnel testing:AIAA-2008-0155[R]. Reston, VA:AIAA, 2008.
文章导航

/