流体力学与飞行力学

液体火箭发动机推进剂泵诱导轮与离心轮的匹配

  • 杨宝锋 ,
  • 李斌 ,
  • 陈晖 ,
  • 刘占一
展开
  • 1. 西安航天动力研究所 液体火箭发动机技术重点实验室, 西安 710100;
    2. 航天推进技术研究院, 西安 710100

收稿日期: 2018-08-15

  修回日期: 2018-10-08

  网络出版日期: 2018-10-29

基金资助

国家"973"计划(613321)

Matching effect between inducer and impeller in a liquid rocket engine propellant pump

  • YANG Baofeng ,
  • LI Bin ,
  • CHEN Hui ,
  • LIU Zhanyi
Expand
  • 1. Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China;
    2. Academy of Aerospace Propulsion Technology, Xi'an 710100, China

Received date: 2018-08-15

  Revised date: 2018-10-08

  Online published: 2018-10-29

Supported by

National Basic Research Program of China (613321)

摘要

为获得诱导轮离心轮周向匹配的时序效应对离心泵外特性以及压力脉动的影响规律,阐释相关作用机制,采用基于分离涡仿真(DES)的离心泵三维全流道数值仿真方法,引入熵产理论以及压力脉动强度系数等先进分析方法对不同匹配角度下离心泵内能量损失机制及压力脉动特性进行了研究。结果表明:离心轮诱导轮的时序效应对泵外特性有一定的影响,随着匹配角度的增加,扬程和效率均呈现先减小后缓慢增大的趋势,扬程变化为0.8%,效率变化为1.2%,其影响机制由不同匹配角度下叶轮通道分离涡、叶轮叶片尾迹以及靠近隔舌处扩压器通道回流涡变化决定;时序效应对离心轮扩压器动静干涉效应影响显著,当诱导轮叶片尾缘位于离心轮相邻主叶片中间位置时,能够有效消除3倍频成分,显著降低泵内压力脉动水平,其中动静干涉区域以及隔舌处扩压器叶片表面压力脉动平均降幅分别达到14.5%和16.7%。

本文引用格式

杨宝锋 , 李斌 , 陈晖 , 刘占一 . 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019 , 40(5) : 122609 -122609 . DOI: 10.7527/S1000-6893.2018.22609

Abstract

The relative circumferential position between the inducer and the impeller (clocking effect) has a considerable impact on the performance and pressure pulsations of the pump, which is, however, often ignored by designers. To evaluate the influence of this effect,a 3D numerical simulation is performed based on the Detached Eddy Simulation (DES) method. The entropy production method and pressure pulsation intensity coefficient are employed to evaluate the energy loss and pressure pulsation characteristics of the pump and clarify the formation mechanism of this clock effect. The numerical results show that the clocking effect has certain influence on the external characteristics of the pump. The head and efficiency first decrease and then slowly increase with the increase of the matching angle, and the maximum variation of the head and efficiency are 0.8% and 1.2%, respectively. The formation of this is owing to the different extents of the separation vortices in the impeller passage and the impeller blade wake in the diffuser inlet as well as the backflow vortices in the diffuser blade passage near volute tongue. The clocking effect has great impact on the rotor-stator interaction effect between the impeller and the diffuser. When the inducer blade trailing edge is located in the middle of two adjacent impeller blades, 3 times of the rotating frequency component of pressure pulsation can be eliminated, and the pressure pulsation level in the pump is dramatically reduced with the Root Mean Square (RMS) value of the pressure pulsation in the rotor-stator interaction region and the diffuser blade surface near the volute tongue decreasing by 14.5% and 16.7%, respectively.

参考文献

[1] 陈晖, 李斌, 张恩昭, 等. 液体火箭发动机高转速诱导轮旋转空化[J]. 推进技术, 2009, 30(4):390-395. CHEN H, LI B, ZHANG E Z, et al. Rotating cavitation of the high speed rotational inducer of LPRE[J]. Journal of Propulsion Technology, 2009, 30(4):390-395(in Chinese).
[2] 郭晓梅, 李昳, 崔宝玲, 等. 前置不同诱导轮高速离心泵旋转空化特性研究[J]. 航空学报, 2013, 34(7):1572-1581. GUO X M, LI Y, CUI B L, et al. Research on the rotation cavitation performance of high-speed rotation centrifugal pump with different pre-position inducers[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1572-1581(in Chinese).
[3] 王洪杰, 舒崚峰, 赵俊龙, 等. 涡轮泵非设计工况压力脉动数值研究[J]. 推进技术, 2014, 35(1):43-53. WANG H J, SHU L F, ZHAO J L, et al. Numerical investigation of pressure fluctuation in turbopump under off-design condition[J]. Journal of Propulsion Technology, 2014, 35(1):43-53(in Chinese).
[4] STEL H, AMARAL G, NEGRAO C, et al. Numerical analysis of the fluid flow in the first stage of a two-stage centrifugal pump with a vaned diffuser[J]. Journal of Fluids Engineering-Transactions of the ASME, 2013, 135(7):071104.
[5] AL-QUTUB A M, KHALIFA A E, AL-SULAIMAN F A. Exploring the effect of v-shaped cut at blade exit of a double volute centrifugal pump[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2012, 134(2):021301.
[6] BARRIO R, BLANCO E, PARRONDO J, et al. The effect of impeller cutback on the fluid-dynamic pulsations and load at the blade-passing frequency in a centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME, 2008, 130(11):111102.
[7] ZHANG N, YANG M G, GAO B, et al. Investigation of rotor-stator interaction and flow unsteadiness in a low specific speed centrifugal pump[J]. Journal of Mechanical Engineering, 2016, 62(1):21-31.
[8] GAO B, GUO P M, ZHANG N, et al. Unsteady pressure pulsation measurements and analysis of a low specific speed centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME, 2017, 139(7):071101.
[9] GAO B, ZHANG N, LI Z, et al. Influence of the blade trailing edge profile on the performance and unsteady pressure pulsations in a low specific speed centrifugal pump[J]. Journal of Fluids Engineering-Transactions of the ASME, 2016, 138(5):051106.
[10] LONG Y, WANG D Z, YIN J L, et al. Numerical investigation on the unsteady characteristics of reactor coolant pumps with non-uniform inflow[J]. Nuclear Engineering and Design, 2017, 320:65-76.
[11] LONG Y, WANG D Z, YIN J L, et al. Experimental investigation on the unsteady pressure pulsation of reactor coolant pumps with non-uniform inflow[J]. Annual of Nuclear Energy, 2017, 110:501-510.
[12] 李伟, 竺晓程, 王惠斌, 等. 时序效应对涡轮尾迹传递过程影响数值研究[J]. 推进技术, 2011, 32(4):471-478. LI W, ZHU X C, WANG H B, et al. Numerical simulation of clocking effect on turbine wake transportation process[J]. Journal of Propulsion Technology, 2011, 32(4):471-478(in Chinese).
[13] 李伟, 竺晓程, 王惠斌, 等. 时序效应对涡轮叶片非定常作用力影响的数值研究[J]. 推进技术, 2012, 33(1):47-53. LI W, ZHU X C, WANG H B, et al. Numerical simulation of clocking effect on turbine blade unsteady force[J]. Journal of Propulsion Technology, 2012, 33(1):47-53(in Chinese).
[14] 李绍斌, 陈符, 颜培刚, 等. 静叶时序对压气机叶片附面层流动影响的数值研究[J]. 航空学报, 2007, 28(S1):62-69. LI S B, CHEN F, YAN P G, et al. Numerical investigation of the effect of stator clocking on blade boundary layer flow in compressor[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1):62-69(in Chinese).
[15] 刘厚林, 崔建保, 谭明高, 等. 离心泵内部流动时序效应的CFD计算[J]. 农业工程学报, 2013, 29(14):67-73. LIU H L, CUI J B, TAN M G, et al. CFD calculation of clocking effect on centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14):67-73(in Chinese).
[16] 王文杰, 袁寿其, 裴吉, 等. 时序效应对导叶式离心泵内部压力脉动影响的数值分析[J]. 机械工程学报, 2015, 51(4):185-192. WANG W J, YUAN S Q, PEI J, et al. Numerical analysis of the clocking effect on the pressure fluctuation in the centrifugal pump with vaned diffuser[J]. Journal of Mechanical Engineering, 2015, 51(4):185-192(in Chinese).
[17] WANG W J, PEI J, YUAN S Q, et al. Experiment investigation on clocking effect of vaned diffuser on performance characteristic and pressure fluctuation in a centrifugal pump[J]. Experiment Thermal and Fluid Science, 2018, 90:286-298.
[18] QU W S, TAN L, CAO S L, et al. Numerical investigation of clocking effect on a centrifugal pump with inlet guide vanes[J]. Engineering Computations, 2016, 33(2):465-481.
[19] JIANG W, LI G J, LIU P F, et al. Numerical investigation of influence of the clocking effect on the unsteady pressure fluctuations and radial forces in the centrifugal pump with vaned diffuser[J]. International Communications in Heat and Mass Transfer, 2016, 71:164-171.
[20] 谈明高, 戴菡葳, 刘厚林, 等. 多级离心泵叶轮时序对振动性能影响的数值研究[J]. 振动与冲击, 2015, 34(24):117-122. TAN M G, DAI H W, LIU H L, et al. Numerical simulation on the effect of impeller clocking position on vibration of multistage centrifugal pumps[J]. Journal of Vibration and Shock, 2015, 34(24):117-122(in Chinese).
[21] 符恒, 卢金玲, 陈楠, 等. 多级轴流泵内叶轮时序效应数值模拟[J]. 排灌机械工程学报, 2016, 34(11):934-940. FU H, LU J L, CHEN N, et al. Numerical simulations on clocking effect of impeller-stator in multistage axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(11):934-940(in Chinese).
[22] TAN M G, HE N C, LIU H L, et al. Experimental test on impeller clocking effect in a multistage centrifugal pump[J]. Advances in Mechanical Engineering, 2016, 8(4):1-10.
[23] 徐成波, 骆大章. 高速离心泵中诱导轮与离心轮的匹配关系研究[J]. 水泵技术, 1997(3):6-8. XU C B, LUO D Z. Study on matching relationship between inducer and impeller in a high speed centrifugal pump[J]. Pump Technology, 1997(3):6-8(in Chinese).
[24] 潘中永, 袁建平, 杨敬江, 等. 诱导轮与泵主叶轮的匹配关系研究[J]. 水泵技术, 2000(3):7-9, 13. PAN Z Y, YUAN J P, YANG J J, et al. Study on matching relationship between inducer and pump impeller[J]. Pump Technology, 2000(3):7-9, 13(in Chinese).
[25] 卢金玲, 邓佳, 徐益荣, 等. 诱导轮时序位置对离心泵水力性能的影响[J]. 农业工程学报, 2015, 31(19):54-60. LU J L, DENG J, XU Y R, et al. Effect of clocking position of inducer on hydraulic characteristics of centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19):54-60(in Chinese).
[26] KOCK F, HERWIG H. Local entropy production in turbulent shear flows:A high-reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer, 2004, 47(10-11):2205-2215.
[27] HOU H C, ZHANG Y X, LI Z L, et al. A numerical research on energy loss evaluation in a centrifugal pump system based on local entropy production method[J]. Thermal Science, 2017, 21(3):1287-1299.
[28] LI X J, JIANG Z W, ZHU Z C, et al. Entropy production analysis for the cavitating head-drop characteristic of a centrifugal pump[J]. Journal of Mechanical Engineering Science, 2018, 10(1):1-10.
文章导航

/