舰载机气动强度与着舰安全性关键技术专栏

舰载机人工进场着舰精确轨迹控制技术

  • 段卓毅 ,
  • 王伟 ,
  • 耿建中 ,
  • 何大全 ,
  • 马坤
展开
  • 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2018-05-15

  修回日期: 2018-09-17

  网络出版日期: 2018-10-31

基金资助

国家级项目

Precision trajectory manual control technologies for carrier-based aircraft approaching and landing

  • DUAN Zhuoyi ,
  • WANG Wei ,
  • GENG Jianzhong ,
  • HE Daquan ,
  • MA Kun
Expand
  • AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2018-05-15

  Revised date: 2018-09-17

  Online published: 2018-10-31

Supported by

National Level Project

摘要

进场着舰精确轨迹控制是舰载机设计的难点和关键技术之一。首先,对舰载机人工进场着舰轨迹及精确轨迹控制的应用需求进行了讨论,指出其必要性和直观的有益效果;随后,讨论了舰载机进场着舰精确轨迹控制的演变过程、发展趋势及涉及的等角下滑航迹率控制技术、进场动力补偿技术、直接力控制技术、DP(Delta flight Path)控制技术等关键技术;最后,讨论了舰载机进场着舰精确轨迹控制对减轻驾驶员操纵负担、降低触舰点分散度、减小触舰载荷等方面的收益。研究工作对舰载机的精确轨迹着舰控制系统设计具有一定的工程指导价值。

本文引用格式

段卓毅 , 王伟 , 耿建中 , 何大全 , 马坤 . 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019 , 40(4) : 622328 -622328 . DOI: 10.7527/S1000-6893.2018.22328

Abstract

Precision trajectory manual control for carrier-based aircraft approaching and landing is one of the difficulties and key technologies in carrier-based aircraft design. First of all, the application requirements of precision trajectory control for carrier-based aircraft approaching and landing are discussed and the necessary and intuitively beneficial effects are pointed out. Then, the evolution and development of precision trajectory control for carrier-based aircraft approaching and landing are discussed in this paper. The flight path control technology, approach power compensation technology, direct lift control technology and DP (Delta flight Path) control technology are also analyzed. At last, the benefits of lightening the pilot's handling burden, reducing touch point dispersion degree, and decreasing the ship based aircraft's landing load are discussed. This research is believed to be of some engineering values to the design of precision trajectory control system for carrier-based aircraft approaching and landing.

参考文献

[1] 李杰, 于川. 航空母舰的舰载机着舰装备[J]. 现代军事, 2006(10):56-58. LI J, YU C. Equipment of ship based carrier aircraft[J]. Modern Military, 2006(10):56-58(in Chinese).
[2] 潘文林. 中国航母舰载机配置与选型探讨[J]. 舰载武器, 2009(6):23-28. PAN W L. Development and option of chinese carrier shipborne aircraft[J]. Shipborne Weapons, 2009(6):23-28(in Chinese).
[3] 田正东. 21世纪初的航母与舰载机[J]. 现代军事, 2000(8):13-14. TIAN Z D. Aircraft carrier and carrier aircraft in 21st century[J]. Modern Military, 2000(8):13-14(in Chinese).
[4] 陈传铮. 航母舰载机[J]. 现代舰船, 2005(11A):42-47. CHEN C Z. Ship based carrier aircraft[J]. Modern Ships, 2005(11A):42-47(in Chinese).
[5] 云雷, 宗昆. 航母舰载机的四大特点[J]. 江苏航空, 1998(4):16-17. YUN L, ZONG K. Four characteristics of carrier aircraft[J]. Jiangsu Aviation, 1998(4):16-17(in Chinese).
[6] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(2):020435. ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):020435(in Chinese).
[7] 李新飞. 舰载机起降关键技术仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2012:64-78. LI X F. Simulation of key technology of lanuch and land for carrier-based aircratf[D]. Harbin:Harbin Engineering University, 2012:64-78(in Chinese).
[8] LIANG Y W. Testing an intelligent Landing Signals Officer (LSO) agent for conducting pilot training in a helicopter deck landing simulator[C]//Proceedings of 2005 International Conference on Neural Networks and Brain. Piscataway, NJ:IEEE Press, 2005:204-207.
[9] RICHARDS R A. Application of multiple artificial intelligence techniques for an aircraft carrier landing decision support tool[C]//IEEE International Conference on Plasma Science. Piscataway, NJ:IEEE Press, 2002:7-11.
[10] MCCABEM J. NAVAIR 00-80T-104 natops landing signal officer manual[M]. Washington, D.C,:Office of the Chief of Naval Operations, 2000.
[11] 杨一栋. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社, 2007:3. YANG Y D. Carrier landing guidance and control of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2007:3(in Chinese).
[12] 钟涛. 舰载机进场动力补偿系统设计[J]. 应用科技, 2013, 40(2):40-43. ZHONG T. The design of the approach power compensator system of a carrier-based aircraft[J]. Applied Science and Technology, 2013, 40(2):40-43(in Chinese).
[13] 王梦. 舰载"菲涅尔"光学助降系统的精确控制研究[D]. 南京:南京航空航天大学, 2014:5-8. WANG M. The precise control research of shipboard Fresnel lens optical landing system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2014:5-8(in Chinese).
[14] HUFF R, MARTORELLA P, MCNEILL W, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach:AIAA-1983-2072[R]. Reston, VA:AIAA, 1983.
[15] 杨一栋. 舰载机等效模型及着舰控制规范[M]. 北京:国防工业出版社, 2013:5. YANG Y D. Equivalent models and landing control criterion of carrier based aircraft[M]. Beijing:National Defense Industry Press, 2013:5(in Chinese).
[16] DENHAM J W. Project MAGIC CARPET:Advanced controls and displays for precision carrier landings:AIAA-2016-1770[R]. Reston, VA:AIAA, 2016.
[17] MARTORELLA P, KELLY C P, NASTASI R. Precision flight path control in carrier landing approach:A case for integrated system design:AIAA-1981-1710[R]. Reston, VA:AIAA, 1981.
[18] 刘松良. 舰载机着舰的自动动力补偿研究[D]. 沈阳:东北大学, 2011:21-29. LIU S L. Research of approach power compensation system for carrier landing[D]. Shenyang:Northeastern University, 2011:21-29(in Chinese).
[19] HUGHES N H. Some studies into improvements in automatic throttle control[R]. Farnborough:Royal Aircraft Establishment, 1972.
[20] LINA L J, CHAMPINE R A, MORRIS G J. Flight investigation of an automatic throttle control in landing approaches:NASA-MEMO-2-19-59L, L-432[R]. Washington, D.C.:NASA, 1998.
[21] HESS R K, URNES J M. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control and Dynamics, 1985, 8(3):289-295.
[22] NASTASI R, MARTORELLA P, HUFF R, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach:AIAA-1983-2072[R]. Reston, VA:AIAA, 1983.
[23] 张玉洁, 杨一栋. 保持飞行迎角恒定的动力补偿系统性能分析[J].飞行力学, 2006, 24(4):30-33. ZHANG Y J, YANG Y D. Analysis of the approach power compensator system with constant angle of attack[J]. Flight Dynamics, 2006, 24(4):30-33(in Chinese).
[24] URNES J M, HESS R K, MOOMAW R F. Development of the Navy H-Dot automatic carrier landing system designed to give improved approach control in air turbulence:AIAA-1979-1772[R]. Reston, VA:AIAA, 1979.
[25] 李忠东. 自动油门控制技术在舰载机上的应用[J].飞机设计, 2012, 32(4):22-24. LI Z D. Application of automatic throttle control technology in the carrier aircraft[J]. Aircraft Design, 2012, 32(4):22-24(in Chinese).
[26] 章卫国, 王新民, 刘长林. 舰载飞机纵向自动着舰控制系统研究[J].西北工业大学学报, 1996, 14(4):549-553. ZHNAG W G, WANG X M, LIU C L. On automatic control system for longitudinal landing on carrier[J]. Journal of Northwestern Polytechnical University, 1996, 14(4):549-553(in Chinese).
[27] URNES J M, HESS R K. Integrated flight control system development-F/A-18A automatic carrier landing system:AIAA-1983-2158[R]. Reston, VA:AIAA, 1983.
[28] CRASSIDIS J L, MOOK D J. An automatic carrier landing system utilizing aircraft sensors:AIAA-1991-2666[R]. Reston, VA:AIAA, 1991.
[29] STEINBERG M C. A fuzzy logic based F/A-18 automatic carrier landing system:AIAA-1992-4392[R]. Reston, VA:AIAA, 1992.
[30] 董然, 原新, 张智, 等. 进场动力补偿器对自动着舰系统的影响[J].飞行力学, 2017, 35(1):34-38. DONG R, YUAN X, ZHANG Z, et al. Influence of approach power compensator on ACLS[J]. Flight Dynamics, 2017, 35(1):34-38(in Chinese).
[31] RUDOWSKY T, COOK S, HYNES M, et al. Review of the carrier approach criteria for carrier-based aircraft-Phase I:NAWCADPAX/TR-2002/71[R]. Patuxent River, MD:Navy Air Warfare Center Aircraft Division, 2002.
[32] 龙飞. 基于舰载飞机的飞推综合控制研究[D]. 成都:电子科技大学, 2007:48-49. LONG F. Carrier landing guidance control and the gliding carrier landing control[D]. Chengdu:University of Electronic Science and Technology of China, 2007:48-49(in Chinese).
[33] GRALOW R T, PEACE J D, SHIPLEY J L. Evaluation of the direct lift control system installed in the F-8C airplane:NATC-FT-51R-65[R]. 1965.
[34] POOLE D. X-35 flight test report:127B5050[R]. Bethesda, MD:Lockheed Martin Corporation, 2001.
[35] ANDERSON M R. Inner and outer loop manual control of carrier aircraft landing:AIAA-1996-3877[R]. Reston, VA:AIAA,1996.
[36] 石明, 屈香菊, 王萌辉. 甲板运动对舰载机人工着舰的影响和补偿[J].飞行力学, 2006, 24(1):5-8. SHI M, QU X J, WANG M H. The influence and compensation of deck motion in carrier landing approach[J]. Flight Dynamics, 2006, 24(1):5-8(in Chinese).
[37] KHAN A, BIL C, MARION K, et al. Real time prediction of ship motion and attitudes using advanced prediction technique[C]//24th International Congress of the Aeronautical Sciences, 2004:1-10.
[38] 潘海飞, 王欣, 沙峰. 舰载机着舰过程中甲板运动补偿技术研究[J]. 信息技术, 2013(4):116-120. PAN H F, WANG X, SHA F. Study on the deck motion compensation technique during carrier aircraft landing[J]. Information Technology, 2013(4):116-120(in Chinese).
[39] 余勇, 杨一栋. 侧向甲板运动补偿技术研究[J]. 航空学报, 2003, 24(1):69-71. YU Y, YANG Y D. Study on the lateral deck motion compensation technique[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1):69-71(in Chinese).
[40] 贾新强, 林鹏, 王敏文, 等. 舰载机着舰甲板运动误差及其补偿仿真研究[J]. 航空计算技术, 2010, 40(1):114-118. JIA X Q, LIN P, WANG M W, et al. Study on disturbance of board movement in process of carrier aircraft's landing and its compensation[J]. Aeronautical Computing Technique, 2010, 40(1):114-118(in Chinese).
[41] 周鑫, 彭荣鲲, 袁锁中, 等. 舰载机着舰纵向甲板运动预估及补偿技术[J]. 南京航空航天大学学报, 2013, 45(5):599-604. ZHOU X, PENG R K, YUAN S Z, et al. Longitudinal deck motion prediction and compensation for carrier landing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(5):599-604(in Chinese).
[42] 祖恩林, 董新民, 陈娅莉. 着舰控制系统中的甲板运动补偿技术研究[J]. 电光与控制, 2009, 16(12):85-88. ZU E L, DONG X M, CHEN Y L. Research on deck motion compensation for automatic carrier landing[J]. Electronics Optics & Control, 2009, 16(12):85-88(in Chinese).
[43] 张永花, 周鑫. 纵向甲板运动补偿技术研究[J]. 电光与控制, 2012, 19(4):18-22. ZHANG Y H, ZHOU X. Study on the longitudinal deck motion compensation technique[J]. Electronics Optics & Control, 2012, 19(4):18-22(in Chinese).
文章导航

/