固体力学与飞行器总体设计

基于Kriging模型梯度解析解的改进一次二阶矩方法

  • 李宝玉 ,
  • 张磊刚 ,
  • 裘群海 ,
  • 余雄庆
展开
  • 1. 南京航空航天大学 航空宇航学院, 南京 210016;
    2. 中国运载火箭技术研究院, 北京 100076

收稿日期: 2018-08-27

  修回日期: 2018-09-26

  网络出版日期: 2018-10-25

基金资助

军委装备发展部"十三五"装备发展领域基金(6140244010216HT15001)

An advanced first order and second moment method based on gradient analytical solution of Kriging surrogate model

  • LI Baoyu ,
  • ZHANG Leigang ,
  • QIU Qunhai ,
  • YU Xiongqing
Expand
  • 1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2018-08-27

  Revised date: 2018-09-26

  Online published: 2018-10-25

Supported by

Equipment Development Department "13th Five-year" Equipment Research Field Foundation of China Central Military Commission

摘要

改进一次二阶矩(AFOSM)法是一种基于功能函数梯度的结构可靠性分析方法,鉴于其对隐式函数的梯度较难求解,提出了一种基于Kriging模型梯度解析解的AFOSM方法,利用Kriging代理模型的解析表达式推导得到功能函数对输入变量的梯度解析解,为AFOSM中设计点的确定提供高精度的梯度信息。通过Kriging与AFOSM的结合,很好地解决了基于有限元模型的隐式情况下梯度计算量相当大、可靠性分析难的问题。数值与工程算例验证了所提Kriging梯度解析解的较高精确性,同时验证了所提基于Kriging解析解的AFOSM结构可靠性分析方法的正确性与较高精度。

本文引用格式

李宝玉 , 张磊刚 , 裘群海 , 余雄庆 . 基于Kriging模型梯度解析解的改进一次二阶矩方法[J]. 航空学报, 2019 , 40(5) : 222629 -222629 . DOI: 10.7527/S1000-6893.2018.22629

Abstract

The Advanced First Order and Second Moment (AFOSM) method is a structural reliability analysis method based on the gradient information of performance function. Since the gradient information of the implicit function is difficult to solve, an AFOSM method based on the gradient analytical solution of Kriging surrogate model is proposed, using the analytical expression of Kriging surrogate model to obtain gradient information of the performance function with respect to input variables, and providing a high-precision gradient information for the computation of the design point in the AFOSM method. By combining Kriging and AFOSM, the problem of gradient calculation and reliability analysis in the implicit situation based on the finite element model can be better solved. Numerical and engineering examples are introduced to verify the high precision of the proposed gradient solution based on Kriging; besides, the accuracy and precision of the proposed Kriging analytical solution based AFOSM reliability analysis method are also verified.

参考文献

[1] THOFT-CHRISTENSEN P, MUROTSU Y. Application of structural systems reliability theory[M]. Berlin:Springer-Verlag, 1986.
[2] HASOFER A M, LIND N C. An exact and invariant first order reliability format[J]. Journal of Engineering Mechanics, 1974, 100(1):111-121.
[3] 吕震宙, 宋述芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京:科学出版社, 2009. LU Z Z, SONG S F, LI H S, et al. Reliability and reliability sensitivity analysis of structure and mechanism[M]. Beijing:Science Press, 2009(in Chinese).
[4] SACKS J, SCHILLER S B, WELCH W J. Design for computer experiment[J]. Technometrics, 1989, 31(1):41-47.
[5] 张磊刚. 不确定性结构的局部和矩独立灵敏度方法研究[D]. 西安:西北工业大学, 2015. ZHANG L G. Research on local and moment-independent sensitivity analysis for structures with uncertainty[D].Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[6] SIMPSON T W, MAUERY T M, KORTE J J, et al. Comparison of response surface and kriging models for multidisciplinary design optimization:AIAA-1998-4755[R]:Reston, VA:AIAA, 1998.
[7] SAKATA S, ASHIDA F, ZAKO M. Structural optimization using kriging approximation[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(7-8):923-939.
[8] LUCIFREDI A, MAZZIERI C, ROSSI M. Application of multi-regressive linear models, dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems[J]. Mechanical Systems and Signal Processing, 2000, 14(3):471-494.
[9] ZHANG L, LU Z, WANG P. Efficient structural reliability analysis method based on advanced Kriging model[J]. Applied Mathematical Modelling, 2015, 39(2):781-793.
[10] CHEN W, RUICHEN J, AGUS S. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty[J]. Journal of Mechanical Design, 2005, 127(5):875-886.
[11] ZHANG L, LU Z, CHENG L, el al. Emulator model based analytical solution for reliability sensitivity analysis[J]. Journal of Engineering Mechanics, ASCE, 2015, 141(8):04015016.
[12] RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences[J]. Computers and Structures, 1978, 9(5):489-494.
[13] OLSSON A, SANDBERG G, DAHLBLOM D. On Latin hypercube sampling for structural reliability analysis[J]. Structural Safety, 2003, 25(1):47-68.
[14] 张磊刚, 吕震宙, 陈军. 基于失效概率的矩独立重要性测度的高效算法[J]. 航空学报, 2014, 35(8):2199-2206. ZHANG L G, LU Z Z, CHEN J. An efficient method for failure probability-based moment-independent importance measure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2199-2206(in Chinese).
[15] 罗阳军, 高宗战, 岳珠峰, 等. 随机有界混合不确定性下结构可靠性优化设计[J]. 航空学报, 2011, 32(6):1058-1066. LUO Y J, GAO Z Z, YUE Z F, et al. Reliability-based optimization design for structures with stochastic and bounded parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1058-1066(in Chinese).
[16] 赵海龙, 岳珠峰, 刘伟. 矩独立重要性分析的Kriging代理模型方法[J]. 航空学报, 2016, 37(7):2234-2241. ZHAO H L, YUE Z F, LIU W. A Kriging surrogate model method for moment-independent importance analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2234-2241(in Chinese).
文章导航

/