材料工程与机械制造

TMF本构和寿命模型:从光棒到涡轮叶片

  • 胡晓安 ,
  • 石多奇 ,
  • 杨晓光 ,
  • 于慧臣
展开
  • 1. 南昌航空大学 飞行器工程学院, 南昌 330063;
    2. 江西省微小航空发动机重点实验室, 南昌 330063;
    3. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    4. 中国航空发动机集团公司 北京航空材料研究院, 北京 100095

收稿日期: 2018-06-28

  修回日期: 2018-07-12

  网络出版日期: 2018-10-19

基金资助

国家重点基础研究发展计划(2015CB057400);国家重点研发计划(2017YFB0702004)

TMF constitutive and life modeling: From smooth specimen to turbine blade

  • HU Xiaoan ,
  • SHI Duoqi ,
  • YANG Xiaoguang ,
  • YU Huichen
Expand
  • 1. School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China;
    2. Jiangxi Key Laboratory of Micro Aeroengine,Nanchang 330063, China;
    3. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    4. Beijing Institute of Aeronautical Materials, AECC, Beijing 100095, China

Received date: 2018-06-28

  Revised date: 2018-07-12

  Online published: 2018-10-19

Supported by

The National Basic Research Program of China (2015CB057400); The National Key Research and Development Program of China (2017YFB0702004)

摘要

针对空心涡轮叶片,发展了考虑瞬态变温效应的热机械疲劳(TMF)本构模型和寿命预测方法。第一,以某涡轮叶片用定向凝固合金DZ125为对象,开展了光棒、缺口TMF试验,结合已有的高温疲劳试验数据,获得了相位、温度范围、应力集中等因素对TMF寿命影响规律;第二,利用材料微观组织分析手段,揭示了导致光棒和缺口TMF失效的疲劳裂纹萌生机理;第三,借助于Chaboche本构模型,进行了各向异性、变温、蠕变损伤修正,建立了考虑变温效应的循环-蠕变本构模型,实现了DZ125合金拉伸、等温循环、蠕变、疲劳-蠕变以及TMF应力应变响应的统一建模和预测;第四,发展了疲劳-蠕变-氧化损伤累积的TMF寿命模型,利用简单纯疲劳和蠕变基础数据获得了寿命模型参数,并进一步发展了名义应力法预测了缺口模拟件的TMF寿命;最后,以某涡轮叶片为对象,进行了模拟飞行载荷谱条件下的瞬态变形响应计算和叶片TMF寿命预测。

本文引用格式

胡晓安 , 石多奇 , 杨晓光 , 于慧臣 . TMF本构和寿命模型:从光棒到涡轮叶片[J]. 航空学报, 2019 , 40(3) : 422494 -422494 . DOI: 10.7527/S1000-6893.2018.22494

Abstract

Thermomechanical fatigue (TMF) constitutive and life models considering transient temperature effect are developed for hollow turbine blades. Firstly, TMF tests of smooth and notched specimens are carried out to test a directionally solidified superalloy DZ125 that is used for the turbine blade. The effect of phase, temperature range and stress concentration factor on TMF lives are obtained. Secondly, The mechanism of fatigue crack initiation that lead to failure of light bar and notch TMF is revealed by means of material microstructure analysis.Thirdly, based on the Chaboche type constitutive model, a cyclic and creep constitutive model is established to investigate the anisotropic, isothermal and creep damage effects. Stress and strain responses under tensile, isothermal cyclic, creep, creep fatigue and TMF are simultaneously modeled and predicted. Fourthly, a TMF life modeling coupling fatigue, creep and oxidation damage is developed and using baseline data including pure fatigue and creep, the parameters of the model are obtained. A nominal stress based method is further developed to predict TMF lives of notched specimens. Finally, the transient deformation and life prediction carried out for a turbine blade subject to a certain loading profile.

参考文献

[1] CHERUVU N, CHAN K, LEVERANT G. Blade life management:Coating systems[R]. EPRI, 2002.
[2] SEHITOGLU H. Constraint effect in thermo-mechanical fatigue[J]. La Revue Du Praticien, 1985, 24(51):221-226.
[3] SEHITOGLU H, BOISMIER D A. Thermo-mechanical fatigue of Mar-M247:Part Ⅱ-Life prediction[J]. Journal of Engineering Materials & Technology, 1990, 112(1):80-89.
[4] BOISMIER D A, SEHITOGLU H. Thermo mechanical fatigue of Mar-M247:Part I-Experiments[J]. Journal of Engineering Materials & Technology, 1990, 112(1):175-179.
[5] WANG M, PANG J C, ZHANG M X, et al. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy[J]. Materials Science and Engineering:A, 2018, 715:62-72.
[6] WAN H Y, ZHOU Z J, LI C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J]. Journal of Materials Science & Technology, 2018, 34(10):1799-1804.
[7] HUNEYCUTT R E, SAXENA A, YOON K B. Oxide-scale thickness measurement for predicting crack growth history in elevated temperature components[J]. International Journal of Pressure Vessels and Piping, 2018, 161:1-9.
[8] HOLLAND S, WANG X, FANG X Y, et al. Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment[J]. Materials Science and Engineering:A, 2018, 725:406-418.
[9] XIA M, GU D, YU G, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116:96-106.
[10] GORDON A P. Crack initiation modeling of a directionally-solidified nickel-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2005.
[11] KUPKOVITS R A. Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC[D]. Atlanta:Georgia Institute of Technology, 2009.
[12] AMARO R L. Thermomechanical fatigue crack formation in a single crystal Ni-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2010.
[13] OROURKE M D. Effects of specimen geometry and coating on the thermo-mechanical fatigue of PWA 1484 superalloy[D]. Atlanta:Georgia Institute of Technology, 2013.
[14] 张国栋, 刘绍伦, 何玉怀, 等. 定向合金DZ125热/机械疲劳寿命预测模型评估[J]. 航空动力学报, 2004, 19(1):17-22. ZHANG G D, LIU S L, HE Y H, et al. Life predication of thermomechanical fatigue in DS superalloy DZ125[J]. Journal of Aerospace Power, 2004, 19(1):17-22(in Chinese).
[15] 张国栋, 刘绍伦, 何玉怀, 等. 相位角对定向合金DZ125热/机械疲劳行为与寿命影响的试验研究[J]. 航空动力学报, 2003, 18(3):383-387. ZHANG G D, LIU S L, HE Y H, et al. The effects of phase angle on thermomechanical fatigue behavior and life in DS superalloy DZ125[J]. Journal of Aerospace Power, 2003, 18(3):383-387(in Chinese).
[16] 张国栋, 刘绍伦, 何玉怀, 等. 保持时间对定向合金DZ125热/机械疲劳断裂行为的影响[J]. 材料工程, 2006(6):49-53. ZHANG G D, LIU S L, HE Y H, et al. The effect of hold time on life and behavior of thermal-mechanical fatigue in DS superalloy DZ125[J]. Journal of Materials Engineering, 2006(6):49-53(in Chinese).
[17] HU X A, YANG X G, SHI D Q, et al. Out of phase thermal mechanical fatigue investigation of a directionally solidified superalloy DZ125[J]. Chinese Journal of Aeronautics, 2016, 29(1):257-267.
[18] NEU R W, SEHITOGLU H. Thermomechanical fatigue, oxidation, and creep:Part i. Damage mechanisms[J]. Metallurgical Transactions A, 1989, 20(9):1755-1767.
[19] MCDOWELL D L, ANTOLOVICH S D, OEHMKE R L T. Mechanistic considerations for TMF life prediction of nickel-base superalloys[J]. Nuclear Engineering & Design, 1992, 133(3):383-399.
[20] NEU R W, SEHITOGLU H. Thermomechanical fatigue, oxidation, and creep:Part Ⅱ. Life prediction[J]. Metallurgical Transactions A, 1989, 20(9):1769-1783.
[21] ZHUANG W Z, SWANSSON N S. Thermo-mechanical fatigue life prediction:A critical review[J]. A Guide to Lead-free Solders, 1998, 30(2):384-399.
[22] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302.
[23] CHABOCHE J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10):1642-1693.
[24] ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211.
[25] SABNIS P A, FOREST S, ARAKERE N K, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy[J]. International Journal of Plasticity, 2013, 51:200-217.
[26] CHABOCHE J L, GAUBERT A, KANOUT P, et al. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging[J]. International Journal of Plasticity, 2013, 46:1-22.
[27] PRAGER W. A new method of analyzing stresses and strains in work-hardening plastic solids[M]. Brown:Brown University, 1955.
[28] PERZYNA P. The constitutive equations for rate sensitive plastic materials providence[M]. Brown:Brown University, 1962.
[29] PERZYNA P. Fundamental problems in viseoplasticity[J]. Advances in Applied Mechanics, 1966, 9:243.
[30] ARMSTRONG P J, FREDERICK C, BRITAIN G. A mathematical representation of the multiaxial Bauschinger effect[M]. 1966.
[31] WALKER K P. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships[R]. Washington, F.C.:NASA; 1981.
[32] BODNER S, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389.
[33] DESERI L, MARES R. A class of viscoelastoplastic constitutive models based on the maximum dissipation principle[J]. Mechanics of Materials, 2000, 32(7):389-403.
[34] MANONUKUL A, DUNNE F P E, KNOWLES D, et al. Multiaxial creep and cyclic plasticity in nickel-base superalloy C263[J]. International Journal of Plasticity, 2005, 21(1):1-20.
[35] MÜCKE R, BERNHARDI O E. On temperature rate terms for viscoplastic constitutive models with applications to high temperature materials[J]. Computer methods in Applied Mechanics and Engineering, 2006, 195(19):2411-2431.
[36] BECKER M, HACKENBERG H P. A constitutive model for rate dependent and rate independent inelasticity. Application to IN718[J]. International Journal of Plasticity, 2011, 27(4):596-619.
[37] SHENOY M M. Constitutive modeling and life prediction in Ni-base superalloys[D]. Atlanta:Georgia Institute of Technology, 2006.
[38] SHENOY M M, MCDOWELL D L, NEU R W. Transversely isotropic viscoplasticity model for a directionally solidified Ni-base superalloy[J]. International Journal of Plasticity, 2006, 22(12):2301-26.
[39] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册:第四册[M]. 北京:航空工业出版社, 2010. The Compile Commitee of Materials Mechanical Data Handbook for Aircraft Engine Design. Materials mechanical data handbook for aircraft engine design (4)[M]. Beijing:Aviation Industry Press, 2010(in Chinese).
[40] KUPKOVITS R A, NEU R W. Thermomechanical fatigue of a directionally-solidified Ni-base superalloy:Smooth and cylindrically-notched specimens[J]. International Journal of Fatigue, 2010, 32(8):1330-1342.
[41] KERSEY R K, STAROSELSKY A, DUDZINSKI D C, et al. Thermomechanical fatigue crack growth from laser drilled holes in single crystal nickel based superalloy[J]. International Journal of Fatigue, 2013, 55:183-193.
[42] CHABOCHE J L. On the plastic and viscoplastic constitutive equations-part I:Rules developed with internal variable concept[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 1983, 105(2):153-158.
[43] MALININ N N, KHADJINSKY G M. Theory of creep with anisotropic hardening[J]. International Journal of Mechanical Sciences, 1972, 14(4):235-246.
[44] KACHANOV M. Elastic solids with many cracks and related problems[J]. Advances in Applied Mechanics, 1993, 30(1):259.
[45] SHI D Q, DONG C L, YANG X G. Constitutive modeling and failure mechanisms of anisotropic tensile and creep behaviors of nickel-base directionally solidified superalloy[J]. Materials & Design, 2013, 45:663-673.
[46] CHABOCHE J L, NOUAILHAS D. A unified constitutive model for cyclic viscoplasticity and its applications to various stainless steels[J]. Journal of Engineering Materials & Technology, 1989, 111(4):189-193.
[47] CHABOCHE J L. Constitutive equations for cyclic palsticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302.
[48] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery-part I:Formulation and basic features for ratchetting behavior[J]. International Journal of Plasticity, 1993, 9(3):375-390.
[49] BENALLAL A, CHEIKH A B. Constitutive laws for engineering materials[M]. New York:ASME Press, 1987.
[50] 王井科. 镍基高温合金及钛合金缺口疲劳问题研究[D]. 北京:北京航空航天大学, 2011. WANG J K. Notch fatigue problems for Ni-base superalloy and Titanium alloy[D]. Beijing:Beihang University, 2001(in Chinese).
[51] MOORE Z J. Life modeling of notched CM247LC DS nickel-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2008.
[52] HU X A, YANG X G, WANG J K, et al. A simple method to analyse the notch sensitivity of specimens in fatigue tests[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(10):1009-1016.
文章导航

/