固体力学与飞行器总体设计

热声载荷作用下薄壁结构非线性响应分析和试验验证

  • 沙云东 ,
  • 张墨涵 ,
  • 赵奉同 ,
  • 朱付磊
展开
  • 1. 沈阳航空航天大学 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100083

收稿日期: 2018-07-16

  修回日期: 2018-08-09

  网络出版日期: 2018-10-17

基金资助

航空科学基金(20151554002)

Nonlinear response analysis and test verification for thin-walled structures to thermal-acoustic loads

  • SHA Yundong ,
  • ZHANG Mohan ,
  • ZHAO Fengtong ,
  • ZHU Fulei
Expand
  • 1. Liaoning Province Key Laboratory of Advanced Measurement and Test Technology of Aviation Propulsion Systems, Shenyang Aerospace University, Shenyang 110136, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2018-07-16

  Revised date: 2018-08-09

  Online published: 2018-10-17

Supported by

Aeronautical Science Foundation of China (20151554002)

摘要

针对热声载荷作用下薄壁结构大挠度非线性响应问题,开展了固支约束金属薄壁板结构热声激励试验及数值模拟分析。通过计算结果与试验结果对比,表明两者结果存在一致性,进而验证了薄壁板在热声载荷作用下动态响应计算方法和数值模型的有效性。在此基础上,针对加筋板结构完成了多种热声载荷组合作用下的动力学响应计算,获得了时域位移响应。重点对该结构在后屈曲状态下的3种典型振动形式进行分析,总结出热载荷与声载荷之间的相对强度决定了板的不同跳变形式。采用统计分析方法建立了位移响应的概率谱密度函数(PDF)并绘图,清楚地显示了后屈曲板的PDF表现出双峰现象。使用功率谱密度(PSD)函数分析了响应频率和峰值随着温度升高的变化,并确定了板的软化和硬化区域。总结了屈曲前/后结构特定区域拉应力和压应力的变化规律,并阐述了造成这种变化的原因。本文工作可对热声载荷作用下薄壁结构响应分析和动强度设计提供参考依据。

本文引用格式

沙云东 , 张墨涵 , 赵奉同 , 朱付磊 . 热声载荷作用下薄壁结构非线性响应分析和试验验证[J]. 航空学报, 2019 , 40(4) : 222544 -222544 . DOI: 10.7527/S1000-6893.2018.22544

Abstract

To address the nonlinear response to thin-walled structure with large deflection under thermal-acoustic load, a thermal-acoustic excitation test and its corresponding simulation analysis for clamped metallic thin-walled plates have been implemented. The calculated results and the test results are consistent, verifying the effectiveness of the calculation method and the numerical model for thin-walled plate subjected to thermal-acoustic loadings. Based on these findings, the dynamic response calculation for a stiffen-reinforced plate structure under different thermal-acoustic load combinations is completed. Based on the obtained time-domain displacement response, analyses on structure vibration behaviors are mainly focused on three typical motions of the post-buckled plate, indicating that the relative strength between the thermal load and the acoustic load determines the Snap-through forms of the plate. The Probability Density Functions (PDF) of the displacement response are drawn by employing statistical analysis showing that the PDF of post-buckled plate exhibits double peak phenomena. Then the Power Spectral Density (PSD) functions are used to analyze the variations of response frequencies and their corresponding peaks with the increase of temperatures, as well as the determination of softening and hardening areas of the plate. At last, this paper discusses the variation of tensile stress with compressive stress in pre/post buckling areas, and gives the reasons for this kind of change. The work represented in this paper can provide some reference for dynamic response analysis and dynamic strength design of thin-walled structures subjected to thermal acoustic loadings.

参考文献

[1] BLEVINS R D, BOFILIOS D, HOLEHOUSE I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure:AFRL-RB-WP-TR-2009-3139[R].Chula Vista:Goodrich Aerostructures Group, 2009.
[2] PRZEKOP A, RIZZI S A. Dynamic snap-through of thin-walled structures by a reduced-order method[J]. AIAA Journal, 2007, 45(10):2510-2519.
[3] SHA Y D, GAO Z J, XU F. Influences of thermal loads on nonlinear response of thin-walled structures in thermo-acoustic environment[J]. Applied Mechanics and Materials, 2012, 105-107:220-226.
[4] 沙云东, 王建, 赵奉同, 等. 热声载荷下薄壁结构振动响应试验验证与疲劳分析[J]. 航空动力学报, 2017, 32(11):2659-2671. SHA Y D, WANG J, ZHAO F T, et al.Vibration response experimental verification and fatigue analysis of thin-walled structures to thermal-acoustic loads[J].Journal of Aerospace Power, 2017, 32(11):2659-2671(in Chinese).
[5] 沙云东, 王建, 骆丽, 等. 热声载荷作用下金属薄壁结构的振动响应与试验验证[J].振动与冲击, 2017, 36(20):218-224. SHA Y D, WANG J, LUO L, et al. Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings[J]. Journal of Vibration and Shock, 2017, 36(20):218-224(in Chinese).
[6] SHA Y D, WEI J, GAO Z J. Nonlinear response with snap-through and fatigue life prediction for panels to thermo-acoustic loadings[J]. Journal of Vibration and Control, 2014, 20(5):679-697.
[7] PRZEKOP A, GUO X Y, AZZOUZ M S, et al. Nonlinear response and fatigue life of shallow shells to acoustic excitation using finite element:AIAA-2003-1710[R]. Reston, VA:AIAA, 2003.
[8] CRISTOFORI A, BENASCIUTTI D, TOVO R. A stress invariant based spectral method to estimate fatigue life under multiaxial random loading[J].International Journal of Fatigue, 2010, 33(7):887-899.
[9] ISTENES JR R R, RIZZI S A, WOLFE H F. Experimental nonlinear random vibration results of thermally buckled composite panels:AIAA-1995-1345[R]. Reston, VA:AIAA, 1995.
[10] IWAN W D, PATULA E J. The merit of different error minimization criteria in approximate analysis[J]. Journal of Applied Mechanics, 1972, 39(1):257-262.
[11] SHINOZUKA M, JAN C M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration, 1972, 25(1):111-128.
[12] SHINOZUKA M, WEN Y K. Monte Carlo solution of nonlinear vibrations[J].AIAA Journal, 1972, 10(1):37-40.
[13] VAICAITIS R, KAVALLIERATOS P A. Nonlinear response of composite panels to random excitation:AIAA-1993-1426[R]. Reston, VA:AIAA, 1993.
[14] VAICAITIS R. Time domain approach for nonlinear response and sonic fatigue of NASP thermal protection systems:AIAA-1991-1177[R]. Reston, VA:AIAA, 1991.
[15] ROBERTS J B, SPANOS P D. Random vibration and statistical linearization[M]. New York:Wiley, 1990.
[16] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. Finite element method-Its basis and fundamentals[M]. 6th ed. Amsterdam:Elsevier, 2005:1.
[17] DHAINAUT J M, GUO X Y, MEI C, et al. Nonlinear random response of panels in an elevated thermal-acoustic environment[J]. Journal of Aircraft, 2003, 40(4):683-691.
[18] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C.Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese).
[19] 杨雄伟, 李跃明, 耿谦. 基于混合FE-SEA法高温环境飞行器宽频声振特性分析[J].航空学报, 2011, 32(11):1851-1859. YANG X W, LI Y M, GENG Q.Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1851-1859(in Chinese).
[20] 桂业伟, 刘磊, 代光月, 等.高超声速飞行器流-热-固耦合研究现状与软件开发[J].航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[21] LIU L, LV B Y, LI Y S.Dynamic response of acoustically excited plates resting on elastic foundations in thermal environments[J].Composite Structures, 2016, 156:35-46.
[22] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al.Preliminary test model design of fluid-thermal-structural interaction problems[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[23] 侯薇, 王晓宇, 景晓东, 等. 1/4波长驻波型热声发动机的非线性模型研究[J].航空学报, 2016, 37(7):2091-2101. HOU W, WANG X Y, JING X D, et al. A quasi-one-dimensional nonlinear model of an open-closed standing-wave thermoacoustic engine[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2091-2101(in Chinese).
[24] JACOBS J H, GRUENSFELDER C, HEDGECOCK C E.Thermal acoustic fatigue of ceramic matrix composite materials:AIAA-1993-1319[R].Reston, VA:AIAA, 1993.
文章导航

/