流体力学与飞行力学

风洞试验模型表面的荧光油膜路径运动速度测量

  • 邹易峰 ,
  • 张征宇 ,
  • 王学渊 ,
  • 黄叙辉 ,
  • 范金磊
展开
  • 1. 西南科技大学 信息工程学院, 绵阳 621000;
    2. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000

收稿日期: 2018-08-08

  修回日期: 2018-08-31

  网络出版日期: 2018-10-10

基金资助

国家自然科学基金(11872069,51475453,11472297)

Velocity measurement of fluorescent oil film path movement on wind tunnel testing model surface

  • ZOU Yifeng ,
  • ZHANG Zhengyu ,
  • WANG Xueyuan ,
  • HUANG Xuhui ,
  • FAN Jinlei
Expand
  • 1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-08-08

  Revised date: 2018-08-31

  Online published: 2018-10-10

Supported by

National Natural Science Foundation of China (11872069,51475453,11472297)

摘要

风洞试验模型在气流脉动作用下小幅振动,导致光流法从荧光油膜时序图像中解得的荧光油膜路径运动速度含有模型运动速度,降低了荧光油膜全局摩阻测量准度。为此,提出试验模型表面的荧光油膜路径运动速度测量方法,将模型表面的背景纹理(如人工网格线或其他典型特征)作为基准,利用图像相关法离散匹配,获得相邻时序图像中背景纹理的(几何位姿)映射矩阵;基于模型运动的连续性,推导了映射矩阵的全局优化方程,并结合光流法,实现了模型振动与其表面荧光油膜路径运动的解耦。Oseen涡对的荧光油膜路径运动速度场仿真试验结果表明:在给定的平移旋转条件下,本文方法的计算结果(沿Oseen涡核连线分布的测量速度)与理论值的最大相对误差为4.1%,较无平移旋转条件下的光流计算结果最大相对误差仅增加0.6%。2 m量级高速风洞某空腔试验与机翼试验的荧光油膜路径运动速度测量结果进一步显示:本文方法测得的流动现象正确,能得到定量、清晰的表面摩擦应力线图谱与油膜路径运动速度场,较传统方法优势明显,工程应用价值大。

本文引用格式

邹易峰 , 张征宇 , 王学渊 , 黄叙辉 , 范金磊 . 风洞试验模型表面的荧光油膜路径运动速度测量[J]. 航空学报, 2019 , 40(6) : 122595 -122595 . DOI: 10.7527/S1000-6893.2018.22595

Abstract

The vibration of the wind tunnel testing model under the flow pulsation leads to the inclusion of the model movement velocity in the fluorescent oil film path velocity directly computed by optical flow method, decreasing the accuracy of surface friction measurement. Therefore, a velocity measurement for fluorescent oil film on a testing model surface is presented. The method uses the background texture (such as artificial grid lines or other typical features) as benchmark to obtain the map matrix (geometric posture) based on the image correlation method and the discretion match for the adjacent timing images. The global optimization equation is also derived based on the continuity of the model movement, and then the movements of the testing model and the fluorescent oil film are decoupled. The simulation of the fluorescent oil film movement for a Oseen vortex pair has demonstrated that the maximum relative velocity error along Oseen vortex cores is 4.1% for the given parameters of translation and rotation. It has only 0.6% increment compared with that of the optical flow method tackling no translation and rotation images. The measurement of fluorescent oil film on a cavity testing model in 2 m scale high-speed wind tunnels has further showed that not only the measured flow phenomenon is correct, but also it is capable to obtain the quantitative and clear surface friction line map and oil film velocity field. Therefore, its advantages are obvious comparing with the tradition methods, and its engineering application value is high.

参考文献

[1] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[2] HAN Z H, CHEN J, ZHU Z, et al. Areodynamic design of transonic nature-laminar-flow(NLF) wing via surrogate-based optimization:AIAA-2016-2041[R]. Reston, VA:AIAA, 2016.
[3] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1623. XING Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics & Astronautics, 2017, 43(8):1616-1623(in Chinese).
[4] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5):765-784. ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):765-784(in Chinese).
[5] SCHRUF G. Status and perspective of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[6] THIBERT J, RENEAUX J, SCHMITT R. ONERA activities on drag reduction[J]. Journal of Aircraft, 2004, 41(1):10-25.
[7] 马洪强, 温昊驹. 高超声速摩擦阻力直接测量实验研究[J]. 实验流体力学, 2016, 30(3):85-91. MA H Q, WEN H J. Direct measurement of skin friction in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):85-91(in Chinese).
[8] LIU T. Extraction of skin-friction fields from surface flow visualizations as an inverse problem[J]. Measurement Science & Technology, 2015, 24(1):124004.
[9] 王鹏, 赵荣奂, 衷洪杰, 等. 三维荧光油流技术的试验研究[J]. 空气动力学学报, 2017, 35(1):146-150. WANG P, ZHAO R H, ZHONG H J, et al. Experimental investigations of 3D luminescent oil flow techniques[J]. Acta Aerodynamica Sinica, 2017, 35(1):146-150(in Chinese).
[10] NAUGHTON J W, HIND M D. Multi-image oil-film interferometry skin friction measurements[J]. Measurement Science & Technology, 2013, 24(12):4003.
[11] 黄湛, 王宏伟, 魏连风, 等. 基于荧光油膜的全局表面摩阻测量技术研究[J]. 空气动力学学报, 2016, 34(3):373-378. HUANG Z, WANG H W, WEI L F, et al. Research of global skin friction measurement based on fluorescent oil film[J]. Acta Aerodynamica Sinica, 2016, 34(3):373-378(in Chinese).
[12] 马洪强, 高贺, 毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4):83-88. MA H Q, GAO H, BI Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):83-88(in Chinese).
[13] ESTEBAN L B, DOGAN E, RODRÍGUEZ-LÓPEZ E, et al. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence[J]. Experiments in Fluids, 2017, 58(9):1-7.
[14] LIU T, MONTEFORT J, WOODIGA S, et al. Global luminescent oil-film skin friction meter[J]. AIAA Journal, 2008, 46(2):476-485.
[15] 陈星, 毕志献, 宫建, 等. 基于剪敏液晶涂层的光学摩阻测量技术研究[J]. 实验流体力学, 2012, 26(6):70-74. CHEN X, BI Z X, GONG J, et al. Optical skin friction measurement using shear-sensitive liquid-crystal coatings[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):70-74(in Chinese).
[16] GAUDET L, GEL T G. Use of liquid crystals for qualitative and quantitative 2-D studies of transition and skin-friction[C]//13th International Congress on Instrumentation in Aerospace Simulation Facilities, 1989.
[17] 耿子海, 史志伟, 金启刚. 油膜干涉测量翼型壁面摩阻低速风洞试验技术[J]. 空气动力学学报, 2016, 34(1):80-85. GENG Z H, SHI Z W, JIN Q G. Invetigation of skin-friction measurements using oil-film interferometry on airfoil wall in low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):80-85(in Chinese).
[18] SCHVLEIN E. Optical method for skin-friction measurements on fast-rotating blades[J]. Experiments in Fluids, 2014, 55(2):1-10.
[19] 代成果, 张长丰, 黄飓, 等. 高超声速表面摩擦应用油膜干涉测量技术研究[J]. 实验流体力学, 2012, 26(2):68-71. DAI C G, ZHANG C F, HUANG J, et al. Hypersonic skin friction stress measurements using oil film interferometry technique[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2):68-71(in Chinese).
[20] LIU T, WOODIGA S. Global skin-friction diagnostics based on surface mass-transfer visualizations[J]. AIAA Journal, 2014, 52(11):2369-2383.
[21] RYAN J M, JOSEPH A, ERIC C. Direct skin friction measurements at mach 10 in a hypervelocity wind tunnel[J]. Journal of Spacecraft and Rockets, 2017, 54(4):871-882.
[22] FONOV S, JONES G, CRAFTON J, et al. The development of optical techniques for the measurement of pressure and skin friction[J]. Measurement Science & Technology, 2006, 16(6):1-8.
[23] CRAFTON J, FONOV S, JONES E, et al. Optical measurements of pressure and shear in a plasma[C]//AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2013.
[24] LIU T S, SULIVAN J P. Luminescent oil-film skin friction meter[J]. AIAA Journal, 1998, 36(8):1460-1465.
[25] HUSEN N, ROOZEBOOM N, LIU T. Global skin-friction measurements using particle image surface flow visualization and a luminescent oil-film[C]//AIAA Science and Technology Forum and Exposition. Reston, VA:AIAA, 2015.
[26] ZHONG H J, WOODIGA S, WANG P, et al. Skin-friction topology of wing-body junction flows[J]. European Journal of Mechanics - B/Fluids, 2015, 53:56-67.
[27] 李鹏, 明晓. 风力机叶片的全局表面摩擦力测量的荧光油膜法[J]. 南京航空航天大学学报, 2011, 42(5):581-585. LI P, MING X. Fluorescence oil film method for global skin friction measurement of wind turbine blade[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5):581-585(in Chinese).
[28] KEISUKE H, YOSHIYUKI T, LIU T S, et al. Optical-flow-based background-oriented schlieren technique for measuring a laser-induced underwater shock wave[J]. Experiments in Fluids, 2016, 57(179):178-189.
[29] LIU T S, MISAKA T, ASAIi K, et al. Feasibility of skin-friction diagnostics based on surface pressure gradient field[J]. Measurement Science and Technology, 2016, 27(12):5304-5320.
[30] 李鹏. 全局表面摩擦应力直接测量技术研究[D]. 南京:南京航空航天大学, 2012. LI P. Studies of direct measurement techniques about global skin friction[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[31] 张征宇, 黄叙辉, 尹疆, 等. 风洞试验中的视频测量技术现状与应用综述[J]. 空气动力学学报, 2016, 34(1):70-79. ZHANG Z Y, HUANG X H, YIN J, et al. Research status and application of videogrammetric measurement techniques for wind tunnel testing[J]. Acta Aerodynamica Sinica, 2016, 34(1):70-79(in Chinese).
[32] 孙岩, 张征宇, 黄诗捷, 等. 风洞试验中模型迎角视觉测量技术研究[J]. 航空学报, 2013, 34(1):1-7. SUN Y, ZHANG Z Y, HUANG S J, et al. Vision measurement technology research for model angle of attack in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):1-7(in Chinese).
[33] LIU T, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54(10):1-58.
[34] MARTINEZ B, BIDINO D, BASTIDE M, et, al. Motion measurement of a wind tunnel model by stereovision technique:AIAA-2015-2405[R]. Reston, VA:AIAA, 2015.
[35] 张征宇, 朱龙, 黄叙辉, 等. 基于前方交会的5点相对定向[J]. 光学学报, 2015, 35(1):231-238. ZHANG Z Y, ZHU L, HUANG X H, et al. Five-point relative orientation based on forward intersection[J]. Acta Optica Sinica, 2015, 35(1):231-238(in Chinese).
[36] 张征宇, 王显圣, 黄叙辉, 等. 高速复杂流动结构的视频测量[J]. 航空学报, 2017, 38(8):18-27. ZHANG Z Y, WANG X S, HUANG X H, et al. Videogrammetry measurement for high-speed complex flow structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):18-27(in Chinese).
[37] 周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4):121812. ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121812(in Chinese).
文章导航

/