插入式机翼下壁板对接具有双剪传力稳定、疲劳性能好的优点,但其结构中心线在对接区变化明显,会带来附加弯矩。为尽量减小对接区的附加弯矩,提出了在建立飞机骨架模型时即优化中央翼下翼面外形面相对外翼下翼面的位置方法。基于插入式机翼下壁板对接结构的特点,阐述了对接结构偏心的来源和附加弯矩的形成;针对某A型飞机的对接结构计算了偏心值,并利用力法对附加弯矩在对接区的分布进行了计算分析。以某A型飞机的对接结构为基础,建立了4组插入式下壁板对接结构的模型,每组模型的中央翼下翼面位置相对外翼的不同;分别用力法和有限元法对附加弯矩进行了计算。结果表明:可以通过优化中央翼下翼面外形面的相对位置达到减小对接区附加弯矩的目的。描述了另外两种下壁板对接形式的附加弯矩情况,并和插入式的进行了简单比较。最后,总结了为减小区域附加弯矩及其不利影响在对接结构设计上需要注意的点。
The butt-joint of inserted wing lower panel butt-joint has the advantages of stable twin shear force transfer and good fatigue performance, but its structure center line changes obviously in the butt-joint area, bringing additional bending moments. To minimize the additional bending moments in the docking area, a method is proposed to optimize the position of the lower wing surface of the central wing relative to the lower wing surface of the outer wing when establishing the aircraft skeleton model. Based on the characteristics of butt-joint structure of insertion wing lower panel, the origin of eccentricity of butt-joint structure and the formation of additional bending moment are expounded; the eccentricity value of butt-joint structure of a certain type A aircraft is calculated, and the distribution of additional bending moment in butt-joint area is calculated and analyzed by the force method. Based on the docking structure of a certain type A aircraft, four groups of models of inserting lower panel docking structure are established, and the position of the lower wing of each group is different from that of the outer wing. The results show that the additional bending moment in the docking area can be reduced by optimizing the relative position of the lower wing surface of the central wing. The additional bending moments of the other two butt-joint forms of the lower panel are described and compared with those of the insertion type. Finally, the paper summarizes the caveats in the design of docking structures for the reduction of the additional bending moments and their adverse effects.
[1] 汤平. 民用飞机外翼中央翼对接面位置的研究[J]. 民用飞机设计与研究, 2014(2):20-26. TANG P. Analysis on joint plane between outer wing box and center wing box for civil aircraft[J]. Civil Aircraft Design & Research, 2014(2):20-26(in Chinese).
[2] 崔卫军, 李庆飞, 李念. 复合材料机翼下壁板对接区设计与分析[J]. 民用飞机设计与研究, 2012(3):49-52. CUI W J, LI Q F, LI N. Structure joint design and analysis of composite lower wing panels[J]. Civil Aircraft Design & Research, 2012(3):49-52(in Chinese).
[3] 牛春匀. 实用飞机结构应力分析及尺寸设计[M]. 北京:航空工业出版社, 2009:325-330. NIU C Y. Airframe stress analysis and sizing[M]. Beijing:Aviation Industry Press, 2009:325-330(in Chinese).
[4] 汤平, 朱森虎, 赵毅. 一种民用飞机外翼中央翼下壁板对接形式的研究[J]. 民用飞机设计与研究, 2014(3):30-34. TANG P, ZHU S H, ZHAO Y. Research on a type of lower panels' joint of civil aircraft wing and center wing[J]. Civil Aircraft Design & Research, 2014(3):30-34(in Chinese).
[5] 杜兴刚, 徐丹, 王红飞, 等. 某飞机机翼下壁板搭接区损伤容限分析[J]. 教练机, 2015(2):32-36. DU X G, XU D, WANG H F, et al. Damage tolerance analysis of lower wing panel lapping zone on certain aircraft[J]. Trainer, 2015(2):32-36(in Chinese).
[6] 汤平, 龚德志. 民用飞机外翼中央翼对接肋腹板选型研究[J]. 民用飞机设计与研究, 2014(6):59-62. TANG P, GONG D Z. Structural analysis and experiment study on joint rib web of civil aircraft wing and center wing[J]. Civil Aircraft Design & Research, 2014(6):59-62(in Chinese).
[7] 霍世慧, 王富生, 王佩艳. 复合材料机翼加筋壁板稳定性分析[J]. 应用力学学报, 2010, 27(2):365-367. HUO S H, WANG F S, WANG P Y. Stability analysis on the ribbed panel of the composite wing[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):365-367(in Chinese).
[8] 陶梅贞. 现代飞机结构综合设计[M]. 西安:西北工业大学出版社, 2014:338-339. TAO M Z. Integrated design of modern aircraft structure[M]. Xi'an:Northwestern Polytechnical University Press, 2014:338-339(in Chinese).
[9] 邱志平, 王晓军. 飞机结构强度分析和设计基础[M]. 北京:北京航空航天大学出版社, 2012:106-109. QIU Z P, WANG X J. Structural strength analysis and design basis of aircraft[M]. Beijing:Beihang University Press, 2012:106-109(in Chinese).
[10] 文立华. 飞行器结构力学[M]. 西安:西北工业大学出版社, 2010:225-229. WEN L H. Structural mechanics of aircraft[M]. Xi'an:Northwestern Polytechnical University Press, 2010:225-229(in Chinese).
[11] LIN C L, MAHN R M, LEE K B. Joint for composite wings:US 9272769B2[P]. 2016-03-01.
[12] 《飞机设计手册》总编委会. 飞机设计手册第9册:载荷、强度和刚度[M]. 北京:航空工业出版社, 2001:322-323. General editorial board of Aircraft Design Manual. Aircraft Design Manual (9th volume):Load, strength and stiffness[M]. Beijing:Aviation Industry Press, 2001:322-323(in Chinese).
[13] 关玉璞, 陈伟. 航空航天结构有限元法[M]. 哈尔滨:哈尔滨工业大学出版社, 2014:162-174. GUAN Y P, CHEN W. Finite element method for aeronautics and astronautics[M]. Harbin:Harbin Institute of Technology Press, 2014:162-174(in Chinese).
[14] 陈五一, 袁跃峰. 钛合金切削加工技术研究进展[J]. 航空制造技术, 2010(15):26-30. CHEN W Y, YUAN Y F. Research progress of titanium alloy cutting technology[J]. Aeronautical Manufacturing Technology, 2010(15):26-30(in Chinese).
[15] HASAN Z F, STULC J F, PRATT P R, et al. Aircraft side of body joint:US 2017/0152013A1[P]. 2013-06-01.
[16] 秦奉涛. C系列飞机的研制及关键技术应用研究[J]. 内燃机与配件, 2017(11):60-62. QIN F T. Development of C series aircraft and application of key technologies[J]. Internal Combustion Engine & Parts, 2017(11):60-62(in Chinese).
[17] 张讯. 国外民用客机外翼、中央翼对接结构综述与分析[J]. 民用飞设计与研究, 2009(3):7-9. ZHANG X. Review and analysis of docking structure for external airliner and central wing of foreign civil aircraft[J]. Civil Aircraft Design & Research, 2009(3):7-9(in Chinese).
[18] 赵长辉, 焦亦彬. C系列飞机先进技术和发展分析[J]. 飞机设计, 2017, 37(6):59-60. ZHAO C H, JIAO Y B. Analysis on advanced technology and development of the C series jetliner[J]. Aircraft Design, 2017, 37(6):59-60(in Chinese).