材料工程与机械制造

热塑性复合材料原位成型过程铺层间结合强度

  • 宋清华 ,
  • 刘卫平 ,
  • 刘小林 ,
  • 刘奎 ,
  • 杨洋 ,
  • 陈吉平
展开
  • 上海飞机制造有限公司, 上海 201324

收稿日期: 2018-07-13

  修回日期: 2019-08-06

  网络出版日期: 2018-09-25

基金资助

上海飞机制造有限公司创新基金(F-CXKT-0155);上海市自然科学基金(17ZR14118001)

Interlaminar bonding strength for thermoplastic composite in an in-situ consolidation process

  • SONG Qinghua ,
  • LIU Weiping ,
  • LIU Xiaolin ,
  • LIU Kui ,
  • YANG Yang ,
  • CHEN Jiping
Expand
  • Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China

Received date: 2018-07-13

  Revised date: 2019-08-06

  Online published: 2018-09-25

Supported by

Creative Foundation of Shanghai Aircraft Manufacturing Co., Ltd (F-CXKT-0155); Natural Science Foundation of Shanghai (17ZR14118001)

摘要

连续纤维增强热塑性复合材料自动铺放原位成型可以实现结构件在制造过程中一次成型,而不需进入热压罐后处理,属于"非热压罐"制造技术,故原位成型过程中铺层间的结合强度将直接决定最终结构件的性能。通过建立铺层间紧密接触模型及高温高压下分子链扩散模型,预测原位成型过程中铺层间的结合强度与成型工艺参数之间的关系,对原位成型工艺参数进行优化,并通过试验验证模型的正确性。试验结果表明,模型预测结果与试验结果基本相符,通过计算发现,压辊压力达到1500 N时,铺层间的紧密接触度才能达到1;通过提高升温速率的方式缩短分子链的扩散时间;原位成型试片的层间剪切强度(ILSS)仅达到热压罐成型的70%左右,因此还需对原位成型试片性能的其他影响因素进行分析。

本文引用格式

宋清华 , 刘卫平 , 刘小林 , 刘奎 , 杨洋 , 陈吉平 . 热塑性复合材料原位成型过程铺层间结合强度[J]. 航空学报, 2019 , 40(4) : 422543 -422543 . DOI: 10.7527/S1000-6893.2018.22543

Abstract

The Automated Fiber Placement (AFP) of the continuous fiber reinforced thermoplastic composite could realize the in-situ consolidation and the in-situ consolidated laminate without being reconsolidated by the autoclave, belonging to a non-autoclave technology. The strength of the laminate made by in-situ consolidation is directly determined by the interlaminard bonding strength. The interlaminar intimate contact model and the molecular chain diffusion model are presented for predicting the relation between the interlaminar bonding strength and processing parameters, optimizing the in-situ consolidated processing parameters. Experiments were carried out to validate these results computed by the interlaminar intimate contact model and the molecular chain diffusion model. The experimental results are similar to the predicted results. When the pressure of roller reaches 1500 N, the degree of the interlaminar intimate could reach 1. The diffusion time of the molecular chain could be shortened by increasing the heating rate. The InterLaminar Shear Strength (ILSS) of the in-situ consolidated laminate is only about 70% of that consolidated by autoclave; therefore, it is necessary to analyze the other factors that influence the strength of the in-situ consolidated laminate.

参考文献

[1] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6):1214-1222. SONG Q H, XIAO J, WEN L W, et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1214-1222(in Chinese).
[2] 富宏亚, 李玥华. 热塑性复合材料纤维铺放技术研究进展[J]. 航空制造技术, 2012(18):44-48. FU H Y, LI Y H. Research on thermoplastic composites fiber placement technology[J]. Aeronautical Manufacturing Technology, 2012(18):44-48(in Chinese).
[3] 王玉琦. 碳纤维织物/聚苯硫醚复合材料工艺研究[J]. 航空学报, 1993, 14(4):214-218. WANG Y Q. A study on carbon fabric/PPS composites[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(4):214-218(in Chinese).
[4] 文立伟, 宋清华, 秦丽华, 等. 基于机器视觉与UMAC的自动铺丝成型构件缺陷检测闭环控制系统[J]. 航空学报, 2015, 36(12):3991-4000. WEN L W, SONG Q H, QIN L H, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3991-4000(in Chinese).
[5] 张婷. 高性能热塑性复合材料在大型客机结构件上的应用[J]. 航空制造技术, 2013(15):32-35. ZHANG T. Applications of high performance thermoplastic composites for commercial airplane structural component[J]. Aeronautical Manufacturing Technology, 2013(15):32-35(in Chinese).
[6] CHENG Q F, FANG Z P, XU Y H, et al. Morphological and spatial effects on toughness and impact damage resistance of PAEK-toughened BMI and graphite fiber composite laminates[J]. Chinese Journal of Aeronautics, 2009, 22(1):87-96.
[7] 陈浩然, 李勇, 还大军, 等. T700/PEEK热塑性自动铺放预浸纱制备质量控制及性能研究[J]. 航空学报, 2018, 39(6):421842. CHEN H R, LI Y, HUAN D J, et al. Quality control and mechanical properties of T700/PEEK thermoplastic prepreg for AFP[J]. Acta Aeronauticaet et Astronautica Sinica, 2018, 39(6):421842(in Chinese).
[8] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1):83-91. SONG Q H, XIAO J, WEN L W, et al. Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering, 2018, 46(1):83-91(in Chinese).
[9] 宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4):120-126. SONG Q H, XIAO J, WEN L W, et al. Non-isothermal crystallinzation kinetics of thermoplastic composite for automated fiber placement[J]. Journal of Materials Engineering, 2018, 46(4):120-126(in Chinese).
[10] 张随山, 包筱梅, 许砚琦, 等. 碳纤维/聚苯硫醚复合材料复合工艺及力学性能的研究[J]. 航空学报, 1993, 14(6):326-329. ZHANG S S, BAO X M, XU Y Q, et al. Study on the processing and mechanical properties of continuous carbon fiber reinforced poly(phenylene sulfide)(PPS) composite[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(6):326-329(in Chinese).
[11] COMERA J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69:10-20.
[12] 唐见茂. 航空航天复合材料非热压罐成型研究进展[J]. 航天器环境工程, 2014, 31(6):577-583. TANG J M. Progress in the out of autoclave process in aerospace composites[J]. Spacecraft Environment Engineering, 2014, 31(6):577-583(in Chinese).
[13] MANSON J A, SEFERIS J C. Autoclave processing of PEEK/carbon fiber composites[J]. Journal of Thermoplastic Composite Materials, 1989, 2(1):34-39.
[14] DARA P H, LOOS A C. Thermoplastic matrix composite processing model[R]. Virginia Polytechnic Institute and State University, 1985.
[15] LEE W I, SPRINGER G S. A model for the manufacturing process of thermoplastic matrix composites[J]. Composite Materials, 1987, 21(11):1017-1055.
[16] WOOL R P, O'CONNOR K M. A theory of crack healing in polymers[J]. Journal of Applied Physics, 1981, 52(10):5953-5963.
[17] KIM Y H, WOOL R P. Theory of healing at a polymer-polymer interface[J]. Macromolecules, 1983, 16(7):1115-1120.
[18] WOOL R P, YUAN B L, MCGAREL O J. Welding of polymer interfaces[J]. Polymer Engineering & Science, 1989, 29(19):1340-1367.
[19] MANTELL S C, SPRINGER G S. Manufacturing process models for thermoplastic composites[J]. Journal of Composite Materials, 1992, 26(16):2348-2377.
[20] 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology, 2013(in Chinese).
[21] 宋清华, 刘卫平, 陈吉平, 等. 碳纤维增强聚苯硫醚复合材料激光加热原位成型过程中温度场研究[J]. 复合材料学报, 2019, 36(2):283-292. SONG Q H, LIU W P, CHEN J P, et al. Study on temperature field for laser heating of carbon fiber reinforced polyphenylene sulphide matrix composite in an automated fiber placement process[J]. Acta Materiae Compositae Sinica, 2019, 36(2):283-292(in Chinese).
[22] 吴兰峰. 聚苯硫醚复合材料的结构与性能[D]. 扬州:扬州大学, 2008. WU L F. Research on the structure and performance for polyphenylene sulfide composites[D]. Yangzhou:Yangzhou University, 2008(in Chinese).
[23] AmericanSociety for Testing and Material. Standard test method for short beam strength of polymer matrix composite materials and their laminates:ASTM D 2344/D 2344M-00(06)[S]. Philadelphia:ASTM International, 2010.
文章导航

/