舰载机气动强度与着舰安全性关键技术专栏

涡桨飞机发展现状及关键气动问题

  • 李杰 ,
  • 杨钊 ,
  • 段卓毅 ,
  • 张恒 ,
  • 赵帅
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2018-05-21

  修回日期: 2018-08-13

  网络出版日期: 2018-09-17

Development status and key aerodynamic problems of turboprop aircraft

  • LI Jie ,
  • YANG Zhao ,
  • DUAN Zhuoyi ,
  • ZHANG Heng ,
  • ZHAO Shuai
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2018-05-21

  Revised date: 2018-08-13

  Online published: 2018-09-17

摘要

独特的动力形式赋予了涡桨飞机优越的推进效率和良好的低速机动、起降性能,使得其在军用及民用领域占有重要的地位并得以不断发展,但同时也带来了一系列需要重点关注的设计问题。本文从目前国内外涡桨飞机的发展现状和设计特点出发,提出其面临的主要气动问题。重点针对国内亟待发展的舰载类涡桨飞机起降过程中的失速和操纵问题进行深入研究,剖析了翼面附近流动的分离状态和发展趋势对于失速特性及操纵安全性的影响规律,归纳总结出需要关注的关键约束和设计原则。在此基础上,通过对一组计算实例的分析,给出了机翼空间流场变化特征和宏观气动力之间的内在联系,并深入阐述了三维增升构型与干净构型及其各站位翼剖面的设计关联性。

本文引用格式

李杰 , 杨钊 , 段卓毅 , 张恒 , 赵帅 . 涡桨飞机发展现状及关键气动问题[J]. 航空学报, 2019 , 40(4) : 622353 -622353 . DOI: 10.7527/S1000-6893.2018.22353

Abstract

The distinctive propulsion device equips the turboprop aircraft with superior propulsion efficiency, excellent low-speed maneuverability as well as good take-off and landing performance, enabling it to develop constantly and occupy a significant place in military and civil fields. But at the same time, the propulsion device also brings a series of design problems that need to be focused on. Based on the current development statuses and design characteristics of the turboprop aircraft at home and abroad, the main aerodynamic problems are pointed out. The stalling and maneuvering issues during the take-off and landing processes of carrier-based turboprops that are urgently to be developed in China are studied in detail. The paper focuses on the influence of the flow separation state and developing trend around the wing surface on the stalling characteristics and maneuvering safety, summarizing the key constraints and design principles to be concerned. On this basis, through the analysis of a set of calculation examples, this paper illustrates the internal relations between the characteristics of flow field around the wing and the total aerodynamic forces. What's more, the design association of the three-dimensional high-lift configuration with the clean wing and the wing profiles at different spanwise positions is also fully expounded.

参考文献

[1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006:1-6. LIU P Q. Theory and application of air propeller[M]. Beijing:Beihang University Press, 2006:1-6(in Chinese).
[2] ZIEMIANSKI J A, WHITLOW J B. NASA/industry advanced turboprop technology program:NASA-TM-100929[R]. Washington, D.C.:NASA, 1988.
[3] DUGAN J F, MILLER B A, GRABER E J, et al. The NASA high-speed turboprop program:NASA-TM-81561[R]. Washington, D.C.:NASA, 1980.
[4] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y.Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[5] 王伟, 段卓毅, 耿建中, 等.考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
[6] LOWREY R. Evolution of transport wings from C-130, C-141, C-5 to C-XX[C]//The Evolution of Aircraft Wing Design:Proceedings of the Symposium. Reston, VA:AIAA, 1980.
[7] DONALD D. Warplanes of the fleet[M]. Westport:Airtime Publishing, 2004.
[8] WINCHESTER J. Air international[M]. Stamford:Key Publishing, 2005.
[9] JACKSON P. Jane's all the world's aircraft 2003-2004[M]. Coulsdon:Jane's Information Group, 2003.
[10] RECKZEH D. Aerodynamic design of the A400m high-lift system[C]//26th International Congress of the Aeronautical Sciences, 2008.
[11] EDEN P. Encyclopedia of modern military aircraft[M]. London:Amber Books, 2004.
[12] 蒋晓莉, 杨士普. 螺旋桨飞机滑流机理分析[J]. 民用飞机设计与研究, 2006(4):34-38. JIANG X L, YANG S P. Analysis of slipstream mechanism of turboprop aircraft[J]. Civil Aircraft Design and Research, 2006(4):34-38(in Chinese).
[13] FERRARO G, KIPOUROS T, SAVILL A M, et al. Propeller-wing interaction prediction for early design[C]//52nd Aerospace Sciences Meeting, 2013.
[14] SMITH A M O. High-lift aerodynamics[J]. Journal of Aircraft, 1975, 12(6):501-530.
[15] RUMSEY C L, YING S X. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2):145-180.
[16] 《飞机设计手册》总编委会. 飞机设计手册(第6册):气动设计[M]. 北京:国防工业出版社, 2002. Committee of Aircraft Design Manual. Aircraft design manual (Volume 6):Aerodynamic design[M]. Beijing:National Defense Industry Press, 2002(in Chinese).
[17] BALAJI R, BRAMKAMP F, HESSE M, et al. Effect of flap and slat riggings on 2-D high-lift aerodynamics[J]. Journal of Aircraft, 2006, 43(5):1259-1271.
[18] 周涛, 李亚林, 梁益华, 等. 襟缝翼对民用飞机失速特性的影响[J]. 上海交通大学学报, 2012, 46(8):1328-1333. ZHOU T, LI Y L, LIANG Y H, et al. Effect of slat and flap on stall characteristic of civil aircraft[J]. Journal of Shanghai Jiaotong University, 2012, 46(8):1328-1333(in Chinese).
[19] TAKALLU M A, GENTRY G L. Aerodynamic characteristics of a propeller-powered high-lift semi-span wing[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 1992.
[20] MULLER L, HEINZE W. Aerodynamic installation effects of an over-the-wing propeller on a high-lift configuration[J]. Journal of Aircraft, 2014, 51(1):249-258.
[21] QIU Y, BAI J, QIAO L. Aerodynamic effects of wing-mounted engine nacelle on high-lift configuration of turboprop airliner[J]. Journal of Aircraft, 2018, 55(3):1082-1089.
[22] VANDENBERG B. Boundary layer measurements on a two dimensional wing with flap:NLR-TR-79009U[R]. Amsterdam:National Aerospace Lab, 1979.
[23] VANDENBERG B, OSKAM B. Boundary layer measurements on a two-dimensional wing with flap and a comparison with calculations[C]//Agard Turbulent Boundary Layers, 1979:80-88.
[24] 李兴伟, 李聪, 徐传宝, 等. 螺旋桨滑流与平尾深失速效应耦合影响试验研究[J]. 实验流体力学, 2018, 32(1):84-89. LI X W, LI C, XU C B, et al. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):84-89(in Chinese).
[25] CRIDER D, FOSTER J. Simulation modeling requirements for loss-of-control accident prevention of turboprop transport aircraft[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2012.
[26] 刘毅, 赵晓霞, 欧阳绍修. 螺旋桨飞机升力失速特性研究[J]. 空气动力学学报, 2015, 33(5):655-660. LIU Y, ZHAO X X, OUYANG S X. Investigation on lift stall characteristics of propeller aircraft[J]. Acta Aerodynamica Sinica, 2015, 33(5):655-660(in Chinese).
[27] 凌茂芙. 民用飞机失速、深失速特性研究文集[M]. 北京:航空工业出版社, 1993. LING M F. Study on stall, deep stall characteristics of civil aircraft[M]. Beijing:Aeronautical Industry Press, 1993(in Chinese).
[28] 施永毅. 民用飞机的失速预防和失速深失速特性的改善[J]. 民用飞机设计与研究, 1999(2):20-22. SHI Y Y. Stall prevention and stall, deep stall characteristics improvement of civil aircraft[J]. Civil Aircraft Design and Research, 1999(2):20-22(in Chinese).
[29] SZELAZEK C A, HICKS R M. Upper-surface modifications for c(l(max)) improvement of selected NACA 6-series airfoils:NASA TM-78603[R]. Washington,D.C.:NASA, 1979.
[30] HICKS R M, SCHAIRER E T. Effects of upper surface modification on the aerodynamic characteristics of the NACA 63(2)-215 airfoil section:NASA-TM-78503[R]. Washington,D.C.:NASA, 1979.
[31] WINKELMANN A E, BARLOW J B, SAINI J K, et al. The effects of leading edge modifications on the post-stall characteristics of wings[C]//AIAA 18th Aerospace Sciences Meeting. Reston, VA:AIAA, 1980.
[32] WENTZ W H, OSTOWARI C. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord fowler flap including slot-gap variations and cove shape modifications:NASA-CR-3687[R]. Washington,D.C.:NASA, 1983.
[33] 孔繁美, 华俊, 向锦武, 等. 高升力与失速特性缓和的翼型设计研究[J]. 北京航空航天大学学报, 2002, 28(2):235-237. KONG F M, HUA J, XIANG J W, et al. Design and research of high-lift mild-stall airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2):235-237(in Chinese).
[34] 陆维爽, 田云, 刘沛清, 等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报, 2016, 37(2):437-450. LU W S, TIAN Y, LIU P Q, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):437-450(in Chinese).
[35] 叶军科, 陈迎春, 李亚林, 等. 民用飞机增升装置缝道参数气动影响的试验研究[J]. 复旦大学学报(自然科学版), 2012, 51(4):415-420. YE J K, CHEN Y C, LI Y L, et al. Slot tests on a high-lift configuration model of an airplane[J]. Journal of Fudan University (Natural Science), 2012, 51(4):415-420(in Chinese).
[36] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical & Computational Fluid Dynamics, 2006, 20(3):181.
[37] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6):1638-1649.
[38] DURRANI N, QIN N. Behavior of detached-eddy simulations for mild airfoil trailing-edge separation[J]. Journal of Aircraft, 2012, 48(1):193-202.
[39] ILIE M. Flow past flat plate at angle of attack; numerical studies using S-A, LES and IDDES[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013.
[40] RASQUIN M, ALI M. Parallel adaptive detached eddy simulations of the EUROLIFT DLR-F11 high lift configuration[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2013.
[41] PENG S H, NEBENFUHR B, DAVIDSON L. Lessons learned from hybrid RANS-LES computations of a three-element airfoil flow[C]//AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.
文章导航

/