[1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006:1-6. LIU P Q. Theory and application of air propeller[M]. Beijing:Beihang University Press, 2006:1-6(in Chinese).
[2] ZIEMIANSKI J A, WHITLOW J B. NASA/industry advanced turboprop technology program:NASA-TM-100929[R]. Washington, D.C.:NASA, 1988.
[3] DUGAN J F, MILLER B A, GRABER E J, et al. The NASA high-speed turboprop program:NASA-TM-81561[R]. Washington, D.C.:NASA, 1980.
[4] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y.Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[5] 王伟, 段卓毅, 耿建中, 等.考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
[6] LOWREY R. Evolution of transport wings from C-130, C-141, C-5 to C-XX[C]//The Evolution of Aircraft Wing Design:Proceedings of the Symposium. Reston, VA:AIAA, 1980.
[7] DONALD D. Warplanes of the fleet[M]. Westport:Airtime Publishing, 2004.
[8] WINCHESTER J. Air international[M]. Stamford:Key Publishing, 2005.
[9] JACKSON P. Jane's all the world's aircraft 2003-2004[M]. Coulsdon:Jane's Information Group, 2003.
[10] RECKZEH D. Aerodynamic design of the A400m high-lift system[C]//26th International Congress of the Aeronautical Sciences, 2008.
[11] EDEN P. Encyclopedia of modern military aircraft[M]. London:Amber Books, 2004.
[12] 蒋晓莉, 杨士普. 螺旋桨飞机滑流机理分析[J]. 民用飞机设计与研究, 2006(4):34-38. JIANG X L, YANG S P. Analysis of slipstream mechanism of turboprop aircraft[J]. Civil Aircraft Design and Research, 2006(4):34-38(in Chinese).
[13] FERRARO G, KIPOUROS T, SAVILL A M, et al. Propeller-wing interaction prediction for early design[C]//52nd Aerospace Sciences Meeting, 2013.
[14] SMITH A M O. High-lift aerodynamics[J]. Journal of Aircraft, 1975, 12(6):501-530.
[15] RUMSEY C L, YING S X. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2):145-180.
[16] 《飞机设计手册》总编委会. 飞机设计手册(第6册):气动设计[M]. 北京:国防工业出版社, 2002. Committee of Aircraft Design Manual. Aircraft design manual (Volume 6):Aerodynamic design[M]. Beijing:National Defense Industry Press, 2002(in Chinese).
[17] BALAJI R, BRAMKAMP F, HESSE M, et al. Effect of flap and slat riggings on 2-D high-lift aerodynamics[J]. Journal of Aircraft, 2006, 43(5):1259-1271.
[18] 周涛, 李亚林, 梁益华, 等. 襟缝翼对民用飞机失速特性的影响[J]. 上海交通大学学报, 2012, 46(8):1328-1333. ZHOU T, LI Y L, LIANG Y H, et al. Effect of slat and flap on stall characteristic of civil aircraft[J]. Journal of Shanghai Jiaotong University, 2012, 46(8):1328-1333(in Chinese).
[19] TAKALLU M A, GENTRY G L. Aerodynamic characteristics of a propeller-powered high-lift semi-span wing[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 1992.
[20] MULLER L, HEINZE W. Aerodynamic installation effects of an over-the-wing propeller on a high-lift configuration[J]. Journal of Aircraft, 2014, 51(1):249-258.
[21] QIU Y, BAI J, QIAO L. Aerodynamic effects of wing-mounted engine nacelle on high-lift configuration of turboprop airliner[J]. Journal of Aircraft, 2018, 55(3):1082-1089.
[22] VANDENBERG B. Boundary layer measurements on a two dimensional wing with flap:NLR-TR-79009U[R]. Amsterdam:National Aerospace Lab, 1979.
[23] VANDENBERG B, OSKAM B. Boundary layer measurements on a two-dimensional wing with flap and a comparison with calculations[C]//Agard Turbulent Boundary Layers, 1979:80-88.
[24] 李兴伟, 李聪, 徐传宝, 等. 螺旋桨滑流与平尾深失速效应耦合影响试验研究[J]. 实验流体力学, 2018, 32(1):84-89. LI X W, LI C, XU C B, et al. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1):84-89(in Chinese).
[25] CRIDER D, FOSTER J. Simulation modeling requirements for loss-of-control accident prevention of turboprop transport aircraft[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2012.
[26] 刘毅, 赵晓霞, 欧阳绍修. 螺旋桨飞机升力失速特性研究[J]. 空气动力学学报, 2015, 33(5):655-660. LIU Y, ZHAO X X, OUYANG S X. Investigation on lift stall characteristics of propeller aircraft[J]. Acta Aerodynamica Sinica, 2015, 33(5):655-660(in Chinese).
[27] 凌茂芙. 民用飞机失速、深失速特性研究文集[M]. 北京:航空工业出版社, 1993. LING M F. Study on stall, deep stall characteristics of civil aircraft[M]. Beijing:Aeronautical Industry Press, 1993(in Chinese).
[28] 施永毅. 民用飞机的失速预防和失速深失速特性的改善[J]. 民用飞机设计与研究, 1999(2):20-22. SHI Y Y. Stall prevention and stall, deep stall characteristics improvement of civil aircraft[J]. Civil Aircraft Design and Research, 1999(2):20-22(in Chinese).
[29] SZELAZEK C A, HICKS R M. Upper-surface modifications for c(l(max)) improvement of selected NACA 6-series airfoils:NASA TM-78603[R]. Washington,D.C.:NASA, 1979.
[30] HICKS R M, SCHAIRER E T. Effects of upper surface modification on the aerodynamic characteristics of the NACA 63(2)-215 airfoil section:NASA-TM-78503[R]. Washington,D.C.:NASA, 1979.
[31] WINKELMANN A E, BARLOW J B, SAINI J K, et al. The effects of leading edge modifications on the post-stall characteristics of wings[C]//AIAA 18th Aerospace Sciences Meeting. Reston, VA:AIAA, 1980.
[32] WENTZ W H, OSTOWARI C. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord fowler flap including slot-gap variations and cove shape modifications:NASA-CR-3687[R]. Washington,D.C.:NASA, 1983.
[33] 孔繁美, 华俊, 向锦武, 等. 高升力与失速特性缓和的翼型设计研究[J]. 北京航空航天大学学报, 2002, 28(2):235-237. KONG F M, HUA J, XIANG J W, et al. Design and research of high-lift mild-stall airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2):235-237(in Chinese).
[34] 陆维爽, 田云, 刘沛清, 等. GAW-1翼型前后缘变弯度气动性能研究[J]. 航空学报, 2016, 37(2):437-450. LU W S, TIAN Y, LIU P Q, et al. Aerodynamic performance of GAW-1 airfoil leading-edge and trailing-edge variable camber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):437-450(in Chinese).
[35] 叶军科, 陈迎春, 李亚林, 等. 民用飞机增升装置缝道参数气动影响的试验研究[J]. 复旦大学学报(自然科学版), 2012, 51(4):415-420. YE J K, CHEN Y C, LI Y L, et al. Slot tests on a high-lift configuration model of an airplane[J]. Journal of Fudan University (Natural Science), 2012, 51(4):415-420(in Chinese).
[36] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical & Computational Fluid Dynamics, 2006, 20(3):181.
[37] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6):1638-1649.
[38] DURRANI N, QIN N. Behavior of detached-eddy simulations for mild airfoil trailing-edge separation[J]. Journal of Aircraft, 2012, 48(1):193-202.
[39] ILIE M. Flow past flat plate at angle of attack; numerical studies using S-A, LES and IDDES[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013.
[40] RASQUIN M, ALI M. Parallel adaptive detached eddy simulations of the EUROLIFT DLR-F11 high lift configuration[C]//AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2013.
[41] PENG S H, NEBENFUHR B, DAVIDSON L. Lessons learned from hybrid RANS-LES computations of a three-element airfoil flow[C]//AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 2013.