电子电气工程与控制

基于复杂网络的无人机飞行冲突解脱算法

  • 黄洋 ,
  • 汤俊 ,
  • 老松杨
展开
  • 国防科技大学 系统工程学院, 长沙 410000

收稿日期: 2018-04-18

  修回日期: 2018-07-23

  网络出版日期: 2018-09-17

基金资助

国家自然科学基金(71601181)

UAV flight conflict resolution algorithm based on complex network

  • HUANG Yang ,
  • TANG Jun ,
  • LAO Songyang
Expand
  • College of Systems Engineering, National University of Defense Technology, Changsha 410000, China

Received date: 2018-04-18

  Revised date: 2018-07-23

  Online published: 2018-09-17

Supported by

National Natural Science Foundation of China (71601181)

摘要

为解决局部空域内的无人机(UAV)群相撞和可能发生连锁碰撞问题,创新地以复杂网络理论为基础,将无人机群的飞行冲突解脱分为关键节点选择和避撞方向选择2个步骤实施,最大限度地保证无人机群受威胁时的安全性。通过分析无人机群的状态信息,选择最重要无人机(关键节点)进行避撞,同时遵循鲁棒性最小原则进行避撞方向选择。通过2个典型无人机飞行案例的仿真实验,验证该策略不仅可以有效解决当前无人机的冲突问题,而且可以防止连锁碰撞,实现整体的最优化。大量仿真实验验证了所提算法的可行性和可扩展性,以及与随机选择方向避撞算法进行比较,结果表明该算法能够提升无人机群的安全性。

本文引用格式

黄洋 , 汤俊 , 老松杨 . 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018 , 39(12) : 322222 -322222 . DOI: 10.7527/S1000-6893.2018.22222

Abstract

In order to solve the problem of collision of Unmanned Aerial Vehicles (UAV) in a local airspace and the possibility of chain collision, innovatively based on the theory of complex networks, the key node selection and the sense selection are applied, maximizing the security of the threat to the UAV group. By analyzing the status information of the UAV group, the most important UAV (key nodes) is selected to avoid collisions, and at the same time, the robustness minimum principle is adopted to select the collision avoidance direction. Simulation results of the two typical UAV flight cases show that this strategy can not only effectively solve the current conflict problem of UAVs, but also prevent chain collisions and achieve overall optimization. Quantitative simulation experiments are conducted to validate the feasibility and scalability of the proposed algorithm. Compared with the random choose direction collision algorithm, the results show that this algorithm can indeed improve the safety of the UAV group.

参考文献

[1] TANG J. Review:Analysis and improvement of traffic alert and collision avoidance system[J]. IEEE Access, 2017(5):21419-21429.
[2] BROOKER P. Airborne separation assurance systems:Towards a work programme to prove safety[J]. Safety Science, 2004, 42(8):723-754.
[3] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
[4] WOLF T B, KOCHENDERFER M J. Aircraft collision avoidance using Monte Carlo real-time belief space search[J]. Journal of Intelligent & Robotic Systems, 2011, 64(2):277-298.
[5] DU Y, NAN Y. Research of robot path planning based on improved artificial potential field[C]//International Conference on Advances in Mechanical Engineering and Industrial Informatics. Hangzhou:Atlantis Press, 2016:1025-1030.
[6] CEKMEZ U, OZSIGINAN M, SAHINGOZ O K. Multi colony ant optimization for UAV path planning with obstacle avoidance[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2016:47-52.
[7] GOERZEN C, KONG Z, METTLER B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance[J]. Journal of Intelligent & Robotic Systems, 2010, 57(1-4):65.
[8] TSAI C C, HUANG H C, CHAN C K. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4813-4821.
[9] TANG J, FAN L, LAO S. Collision avoidance for multi-uav based on geometric optimization model in 3D airspace[J]. Arabian Journal for Science & Engineering, 2014, 39(11):8409-8416.
[10] PRANDINI M, HU J, LYGEROS J, et al. A probabilistic approach to aircraft conflict detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):199-220.
[11] FAN L, TANG J, LING Y, et al. Novel conflict resolution model for multi-UAV based on CPN and 4D trajectories[J]. Asian Journal of Control, 2016, 18(2):721-732.
[12] MANATHARA J G, GHOSE D. Rendezvous of multiple UAVs with collision avoidance using consensus[J]. Journal of Aerospace Engineering, 2012, 25(4):480-489.
[13] LUO C, MCCLEAN S I, PARR G, et al. UAV position estimation and collision avoidance using the extended Kalman filter[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6):2749-2762.
[14] RAGI S, CHONG E K P. UAV path planning in a dynamic environment via partially observable Markov decision process[J]. IEEE Transactions on Aerospace & Electronic Systems, 2013, 49(4):2397-2412.
[15] LIN Y, SARIPALLI S. Path planning using 3D dubins curve for unmanned aerial vehicles[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2014:296-304.
[16] SHIM D H, SASTRY S. An evasive maneuvering algorithm for UAVs in see-and-avoid situations[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2007:3886-3891.
[17] LIN Y, SARIPALLI S. Collision avoidance for UAVs using reachable sets[C]//International Conference on Unmanned Aircraft Systems. Piscataway, NJ:IEEE Press, 2015:226-235.
[18] ARCHIBALD J K, HILL J C, JEPSEN N A, et al. A satisficing approach to aircraft conflict resolution[J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2008, 38(4):510-521.
[19] GEORGE J, GHOSE D. A reactive inverse PN algorithm for collision avoidance among multiple unmanned aerial vehicles[C]//American Control Conference, Hyatt Regency Riverfront. Piscataway, NJ:IEEE Press, 2009:3890-3895.
[20] 刘鑫, 杨霄鹏, 刘雨帆, 等. 基于GA-OCPA学习系统的无人机路径规划方法[J]. 航空学报, 2017, 38(11):321275. LIU X, YANG X P, LIU Y F, et al. UAV path planning based on GA-OCPA learning system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):321275(in Chinese).
[21] LU L, CHEN D, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650:1-63.
[22] MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524:65-68.
[23] DING J, WEN C, LI G. Key node selection in minimum-cost control of complex networks[J]. Physica A Statistical Mechanics & Its Applications, 2017, 486:251-261.
[24] TOMLIN C, MITCHELL I, GHOSH R. Safety verification of conflict resolution maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(2):110-120.
文章导航

/