电子电气工程与控制

临近空间高超声速跳跃滑翔式目标自适应跟踪模型

  • 李凡 ,
  • 熊家军
展开
  • 1. 空军预警学院 研究生大队, 武汉 430019;
    2. 空军预警学院 预警情报系, 武汉 430019

收稿日期: 2018-05-23

  修回日期: 2018-08-06

  网络出版日期: 2018-08-30

基金资助

国家"863"计划(2015AA7056045,2015AA8017032P)

Adaptive tracking model for near space hypersonic jumping gliding target

  • LI Fan ,
  • XIONG Jiajun
Expand
  • 1. Graduate Management Office, Air Force Early Warning Academy, Wuhan 430019, China;
    2. Early Warning Intelligence, Air Force Early Warning Academy, Wuhan 430019, China

Received date: 2018-05-23

  Revised date: 2018-08-06

  Online published: 2018-08-30

Supported by

National High-tech Research and Development Program of China (2015AA7056045, 2015AA8017032P)

摘要

针对临近空间高超声速跳跃式滑翔目标跟踪问题,在将加速度建模为具有正弦波(SW)自相关随机过程的基础上,提出一种自适应非零均值正弦波相关(ANM-SW)模型。其核心是对正弦波相关模型进行均值补偿构建ANM-SW模型,并推导了模型状态方程;为深入分析均值补偿的作用,分别从时域和频域的角度探讨了自适应非零均值模型的物理本质;此外,为进一步说明模型的适应性问题,结合Kalman滤波推导了SW及ANM-SW模型状态更新的系统动态误差,验证了ANM-SW模型在机动适应方面的优越性;最终仿真表明与SW模型相比,ANM-SW模型在跟踪精度及机动适应能力方面具有一定的优势性。

本文引用格式

李凡 , 熊家军 . 临近空间高超声速跳跃滑翔式目标自适应跟踪模型[J]. 航空学报, 2018 , 39(12) : 322355 -322355 . DOI: 10.7527/S1000-6893.2018.22355

Abstract

To address the near space hypersonic jump gliding target tracking problem, an Adaptive Non-zero Mean Sine Wave (ANM-SW) model is proposed on the basis of modeling acceleration as a random process of Sine Wave (SW) autocorrelation. The core of the model is to compensate the mean SW and construct the ANM-SW model; in this process, the state equation of the model is derived. To further analyze the role of mean compensation with this model, the physical nature of adaptive non-zero mean value model is discussed from the perspective of time domain and frequency domain. Furthermore, the system dynamic errors of SW and ANM-SW models status update are deduced taking Kalman filter as the filtering algorithm. In this way, the superiority of ANM-SW model in maneuver adaptation is verified. Finally, the simulation experiments show that compared with SW model, ANM-SW model has certain advantages in tracking accuracy and maneuverability.

参考文献

[1] WALKER S H, SHERK J, SHELL D, et al. The DARPA/AF falcon program:The hypersonic technology vehicle#2(HTV-2) flight demonstration phase[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston, VA:AIAA, 2008.
[2] ZHANG Y, XIAN B, DIAO C, et al. Robust tracking control design for a flexible air-breathing hypersonic vehicle[J]. Journal of Central South University, 2014, 21:130-139.
[3] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rocket, 2007, 44(2):374-387.
[4] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 24(6):1544-1553.
[5] HOUGH M E. Reentry maneuver estimation using nonlinear Markov acceleration models[J]. Journal of Guidance Control & Dynamics, 2017, 40(7):1-18.
[6] LI X R, JILKOV V P. Survey of maneuvering target tracking. Part Ⅱ:Motion models of ballistic and space targets[J]. IEEE Transactions on Aerospace and Electronic Systems. 2010, 46(1):96-119.
[7] 李凡, 熊家军, 张凯, 等. 临近空间高超声速目标跟踪技术研究[J]. 战术导弹技术, 2018(4):38-44. LI F, XIONG J J, ZHANG K, et al. Research on tracking technology of near space hypersonic target[J]. Tactical Missile Technology, 2018(4):38-44(in Chinese).
[8] 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11):3466-3475. ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese).
[9] 张翔宇, 王国宏, 李俊杰, 等. 临近空间高超声速滑跃式轨迹目标跟踪技术[J]. 航空学报, 2015, 36(6):1983-1994. ZHANG X Y, WANG G H, LI J J, et al. Tracking of hypersonic sliding target in near-space[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1983-1994(in Chinese).
[10] 吴楠, 陈磊. 高超声速滑翔再入飞行器弹道估计的自适应卡尔曼滤波[J]. 航空学报, 2013, 34(8):1960-1971. WU N, CHEN L. Adaptive Kalman filtering for trajectory estimation of hypersonic glide reentry vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1960-1971(in Chinese).
[11] LI G, ZHANG H, TANG G. Maneuver characteristics analysis for hypersonic glide vehicles[J]. Aerospace Science & Technology, 2015, 43:321-328.
[12] 李广华. 高超声速滑翔飞行器运动特性分析及弹道跟踪预报方法研究[D]. 长沙:国防科技大学, 2016:10-60. LI G H. Motion characteristics analysis and trajectory prediction for hypersonic glide vehicles[D]. Changsha:National University of Defense Technology, 2016:10-60(in Chinese).
[13] ZHANG F, XI Y, LIN Z, et al. Constrained motion model of mobile robots and its applications[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2009, 39(3):773-787.
[14] DUAN Z, LI X R. Modeling of target motion constrained on straight line[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(2):548-562.
[15] LIU Y, ZHANG X, YANG Z, et al. Sine tracking model of hypersonic target in near space based on radar detecting[C]//International Radar Conference. Piscataway, NJ:IEEE Press, 2016:1-4.
[16] 聂晓华, 张夫鸣, 徐一鸣. NSHV机动目标跟踪的自适应模型算法[J]. 系统工程与电子技术, 2016, 38(3):506-511. NIE X H, ZHANG F M, XU Y M. Adaptive model algorithm for maneuvering target tracking of NSHV[J]. Systems Engineering and Electronics, 2016, 38(3):506-511(in Chinese).
[17] 王国宏, 李俊杰, 张翔宇, 等. 临近空间高超声速滑跃式机动目标的跟踪模型[J]. 航空学报, 2015, 36(7):2400-2410. WANG G H, LI J J, ZHANG X Y, et al. A tracking model for near space hypersonic slippage leap maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2400-2410(in Chinese).
[18] 潘泉, 梁彦, 杨峰, 等. 现代目标跟踪与信息融合[M]. 北京:国防工业出版社, 2009:3-34. PAN Q, LIANG Y, YANG F, et al. Modern targets tracking and information fusion[M]. Beijing:National Defense Industry Press, 2009:3-34(in Chinese).
[19] 周宏仁, 敬忠良, 王培德. 机动目标跟踪[M]. 北京:国防工业出版社, 1991:160-185. ZHOU H R, JING Z L, WANG P D. Tracking of maneuvering targets[M]. Beijing:National Defense Industry Press, 1991:160-185(in Chinese).
[20] ZHANG B, LI Z, PERINA A, et al. Adaptive local movement modeling for robust object tracking[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(7):1515-1526.
文章导航

/