固体力学与飞行器总体设计

重力姿轨耦合效应引起的太阳能电站轨道共振

  • 刘玉亮 ,
  • 邬树楠 ,
  • 张开明 ,
  • 吴志刚
展开
  • 1. 大连理工大学 航空航天学院, 大连 116024 2. 大连理工大学 工业装备结构分析国家重点实验室, 大连 116024

收稿日期: 2018-04-11

  修回日期: 2018-05-14

  网络出版日期: 2018-08-30

基金资助

国家自然科学基金(11432010,11502040);中央高校基本科研业务费(DUT15LK31)

Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling

  • LIU Yuliang ,
  • WU Shu'nan ,
  • ZHANG Kaiming ,
  • WU Zhigang
Expand
  • 1. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Received date: 2018-04-11

  Revised date: 2018-05-14

  Online published: 2018-08-30

Supported by

National Natural Science Foundation of China (11432010,11502040); the Fundamental Research Funds for the Central Universities (DUT15LK31)

摘要

以任意相控阵天线式空间太阳能电站为研究对象,主要研究了其在轨运行过程中受到的重力姿轨耦合效应对其轨道运动的影响。首先,通过Hamilton原理建立起考虑重力姿轨耦合效应时的姿态运动和轨道运动的方程。其中,任意相控阵天线式空间太阳能电站被简化成刚体,它的重力势能以其结构尺寸和其轨道半径的比值为小量进行泰勒展开,并保留至二阶项。之后,采用解析的方法对方程进行分析,并发现当电站的姿态运动满足一定条件时,其轨道运动将会出现共振现象。此外,重力姿轨耦合效应还会引起空间太阳能电站轨道运动长期的漂移,通过选择合适的轨道运动初始条件可以消除漂移;而且,在一定条件下,重力姿轨耦合效应还会引起轨道运动的发散。最后,数值仿真结果验证了分析的正确性。

本文引用格式

刘玉亮 , 邬树楠 , 张开明 , 吴志刚 . 重力姿轨耦合效应引起的太阳能电站轨道共振[J]. 航空学报, 2018 , 39(12) : 222194 -222194 . DOI: 10.7527/S1000-6893.2018.22194

Abstract

The gravitational orbit-attitude coupling effect on the orbital motion of an arbitrarily phased array space solar power station is studied in this paper. The dynamic equations of the orbital and attitude motions of the space solar power station, considering the effect of gravitational coupling, are firstly derived from the Hamilton dynamics. The arbitrarily phased array space solar power station is simplified as a rigid body and its gravitational potential is expanded in a Taylor series in a small ratio (spacecraft size/orbital radius), and is retained up to the second order terms. Then the equations are analyzed through analytic methods and a resonance phenomenon of the orbital motion caused by the gravitational orbit-attitude coupling effect is discovered when the attitude motion satisfies some certain conditions. In addition, the effect of gravitational orbit-attitude coupling will also result in secular orbital drift of the space solar power station, and the drift can be eliminated by selecting appropriate initial conditions of the orbital motion. The orbit of the space solar power station is unstable under the effect of gravitational orbit-attitude coupling when there exists a constant earth-pointing error in the pitch angle. Finally, numerical simulations are provided, and the results prove the correctness of the analyses above.

参考文献

[1] GLASER P E. Power from the sun:Its future[J]. Science, 1968, 162(3856):857-861.
[2] 侯欣宾, 王立, 张兴华, 等. 多旋转关节空间太阳能电站概念方案设计[J]. 宇航学报, 2015, 36(11):1332-1338. HOU X B, WANG L, ZHANG X H, et al. Concept design on multi-rotary joints SPS[J]. Journal of Astronautics, 2015, 36(11):1332-1338(in Chinese).
[3] SASAKI S, TANAKA K, HIGUCHI K, et al. A new concept of solar power satellite:Tethered-SPS[J]. Acta Astronautica, 2007, 60(3):153-165.
[4] SEBOLDT W, KLIMKE M, LEIPOLD M, et al. European sail tower SPS concept[J]. Acta Astronautica, 2001, 48(5):785-792.
[5] YANG Y, ZHANG Y, DUAN B, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121:51-58.
[6] MANKINS J, KAYA N, VASILE M. SPS-ALPHA:The first practical solar power satellite via arbitrarily large phased array (A 2011-2012 NIAC Project)[C]//10th International Energy Conversion Engineering Conference. Reston, VA:AIAA, 2012.
[7] SINCARSIN G B, HUGHES P C. Gravitational orbit-attitude coupling for very large spacecraft[J]. Celestial Mechanics, 1983, 31(2):143-161.
[8] GRAF J O F. Orbital motion of the solar power satellite:TR-N78-1548[R]. Washington, D.C.:NASA, 1977.
[9] 魏乙, 邓子辰, 李庆军, 等. 光压摄动对空间太阳能电站轨道的影响研究[J]. 应用数学与力学, 2017, 38(4):399-409. WEI Y, DENG Z C, LI Q J, et al. Effects of solar radiation pressure on orbits of space solar power station[J]. Applied Mathematics & Mechanics, 2017, 38(4):399-409(in Chinese).
[10] WIE B, ROITHMAYR C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451.
[11] MCNALLY I, SCHEERES D, RADICE G. Locating large solar power satellites in the geosynchronous Laplace plane[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3):489-505.
[12] MCNALLY I, SCHEERES D, RADICE G. Attitude dynamics of large geosynchronous solar power satellites[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2014.
[13] 刘玉亮, 邬树楠, 吴志刚, 等. 空间太阳能电站地球同步拉普拉斯轨道动力学特性[J]. 中国空间科学技术, 2016, 36(5):1-8. LIU Y L, WU S N, WU Z G, et al. Dynamic characteristics of geosynchronous Laplace orbit for space solar power station[J]. Chinese Space Science and Technology, 2016, 36(5):1-8(in Chinese).
[14] 邓子辰, 曹珊珊, 李庆军, 等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究[J]. 中国科学:技术科学, 2016, 46(12):1242-1253. DENG Z C, CAO S S, LI Q J, et al. Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method[J]. Scientia Sinica Technologica, 2016, 46(12):1242-1253(in Chinese).
[15] 文奋强, 邓子辰, 魏乙, 等. 太阳帆塔轨道和姿态耦合动力学建模及辛求解[J]. 应用数学与力学, 2017, 38(7):762-768. WEN F Q, DENG Z C, WEI Y, et al. Dynamic modeling and symplectic solution of coupled orbit and attitude for solar sail towers[J]. Applied Mathematics & Mechanics, 2017, 38(7):762-768(in Chinese).
[16] 魏乙, 邓子辰, 李庆军, 等. 空间太阳能电站的轨道, 姿态和结构振动的耦合动力学建模及辛求解[J]. 动力学与控制学报, 2016, 14(6):513-519. WEI Y, DENG Z C, LI Q J, et al. Coupling dynamic modeling among orbital motion, attitude motion and structural vibration and symplectic solution of SPS[J]. Journal of Dynamics and Control, 2016, 14(6):513-519(in Chinese).
[17] ISHIMURA K, HIGUCHI K. Coupling among pitch motion, axial vibration, and orbital motion of large space structures[J]. Journal of Aerospace Engineering, 2008, 21(2):61-71.
[18] WANG Y, XU S J. Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet[J]. Journal of Aerospace Engineering, 2012, 27(1):140-150.
[19] ASHENBERG J. Mutual gravitational potential and torque of solid bodies via inertia integrals[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 99(2):149-159.
[20] LIU Y L, WU S N, ZHANG K M, et al. Gravitational orbit-attitude coupling dynamics of a large solar power satellite[J]. Aerospace Science and Technology, 2017, 62:46-54.
[21] ZHAO Y, ZHANG J R, ZHANG Y, et al. Gravitational force and torque on a solar power satellite considering the structural flexibility[J]. Acta Astronautica, 2017, 140:322-337.
[22] 刘玉亮, 邬树楠, 刘家夫, 等. 空间太阳能电站重力姿态-轨道-结构耦合特性[J]. 航空学报, 2017, 38(12):221244. LIU Y L, WU S N, LIU J F, et al. Gravitational attitude-orbit-structure coupling of space solar power station[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221244(in Chinese).
[23] MORAN J P. Effects of plane librations on the orbital motion of a dumbbell satellite[J]. ARS Journal, 1961, 31(8):1089-1096.
[24] YU E Y. Long-term coupling effects between librational and orbital motions of a satellite[J]. AIAA Journal, 1964, 2(3):553-555.
[25] MOHAN S N, LANGE J V, LANGE B O. Interaction between attitude libration and orbital motion of a rigid body in a near Keplerian orbit of low eccentricity[J]. Celestial Mechanics, 1972, 5(2):157-173.
[26] HUGHES P C. Spacecraft attitude dynamics[M]. New York:Dover Publications, 2004:298-300.
文章导航

/