电子电气工程与控制

空中交通相依网络的脆弱性研究

  • 王兴隆 ,
  • 潘维煌 ,
  • 赵末
展开
  • 1. 中国民航大学 空中交通管理学院, 天津 300300;
    2. 空中交通管理系统与技术国家重点实验室, 南京 210014;
    3. 中国民航大学 民航空管研究院, 天津 300300

收稿日期: 2018-04-23

  修回日期: 2018-05-22

  网络出版日期: 2018-08-27

基金资助

国家自然科学基金(61571441,U1533112);国家重点研发计划(2016YFB0502405);空中交通管理系统与技术国家重点实验室开放基金(SKLATM201705);中央高校基本科研业务经费专项资金(3122018D027,3122015C024,ZXH2012M002)。

Vulnerability of air traffic interdependent network

  • WANG Xinglong ,
  • PAN Weihuang ,
  • ZHAO Mo
Expand
  • 1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China;
    2. Corporation State Key Laboratory of Air Traffic Management System and Technology, Nanjing 210014, China;
    3. Civil Aviation ATM Research Institute, Civil Aviation University of China, Tianjin 300300, China

Received date: 2018-04-23

  Revised date: 2018-05-22

  Online published: 2018-08-27

Supported by

National Natural Science Foundation of China (61571441, U1533112); National Key R&D Program of China (2016YFB0502405); State Key Laboratory of Air Traffic Management System and Technology (SKLATM201705); the Fundamental Research Funds for the Central Universities (3122014D036, 3122015C024, ZXH2012M002)

摘要

机场、航路和管制扇区构成空中交通相依网络,节点在受到扰动时,网络运输性能下降,引发网络脆弱性。提出一种空中交通相依网络脆弱性的度量方法,首先构建机场网络、航路网络和管制扇区网络3个层网络,基于空中交通管理规则与层网络间的逻辑连接关系,建立空中交通相依网络模型。在随机扰动和蓄意扰动节点两种不同失效模式下,采用最大连通度和结构熵两个指标,并给出了相应算法,分析相依网络的结构脆弱性;创建流量熵和交通流损失比指标,设计了相应算法,研究相依网络的功能脆弱性。研究结果表明,随机扰动对空中交通相依网络影响更大;网络的结构脆弱源与功能脆弱源是机场网络;网络的脆弱性与层网络间的连接方式和层网络的交通量不匹配有关。

本文引用格式

王兴隆 , 潘维煌 , 赵末 . 空中交通相依网络的脆弱性研究[J]. 航空学报, 2018 , 39(12) : 322235 -322235 . DOI: 10.7527/S1000-6893.2018.22235

Abstract

The airport, air route and air control sector constitute an air traffic interdependent network. When the node is disturbed, the network transportation performance is degraded, causing network vulnerability. This paper proposes a measure for the vulnerability of air traffic dependent networks. Three layer networks of the airport, air route, and air control sector have been established; an air traffic interdependent network model has been established based on the air traffic regulations and the logical connections among layer networks. In the two failure modes of stochastic disturbance and deliberate disturbance nodes, the paper comes up with the corresponding algorithm and analyzes the structural vulnerabilities of the interdependent networks by employing the maximum connectivity and the structural entropy. The traffic entropy and the loss ratio of traffic flow are used to study the functional vulnerability of the interdependent network with the corresponding algorithm. The research shows that the stochastic disturbance has a greater influence on the air traffic interdependent networks than the deliberate disturbance; the networks' source of structural vulnerability and functional vulnerability are the airport networks; and the vulnerability of the network is related to the connections of the layer networks and the mismatch of the air traffic volume.

参考文献

[1] PARSHANI R, BULDYREV S, HAVLIN S. Interdependent networks:Reducing the coupling strength leads to a change from a first to second order percolation transition[J]. Physical Review Letters, 2010, 105(4):048701.
[2] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291):1025-1028.
[3] DANZIGER M M, SHEKHTMAN L M, BASHAN A, et al. Vulnerability of interdependent networks and networks of networks[J]. Berlin:Springer International Publishing, 2016:75-93.
[4] FU G, DAWSON R, KHOURY M, et al. Interdependent networks:Vulnerability analysis and strategies to limit cascading failure[J]. European Physical Journal B, 2014, 87(7):1-10.
[5] LAPRIE J C, KANOUN K, KANICHE M. Modelling interdependencies between the electricity and information infrastructures[C]//International Conference on Computer Safety, 2007:54-67.
[6] BERNSTEIN A, BIENSTOCK D, HAY D, et al. Power grid vulnerability to geographically correlated failures-Analysis and control implications[C]//IEEE INFOCOM, 2014, 22(4):2634-2642.
[7] OUYANG M. Review on modeling and simulation of interdependent critical infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121(1):43-60.
[8] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1):112-118. WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):112-118(in Chinese).
[9] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8):2753-2763. XU X H, LI S M. Identification and prediction of air traffic congestion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2753-2763(in Chinese).
[10] WANG H Y, XU X H, ZHAO Y F. Empirical analysis of aircraft clusters in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2017, 231(9):1718-1731.
[11] WANG H Y, SONG Z Q, WEN R Y, et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory[J]. Aerospace Science & Technology, 2016, 58:518-528.
[12] BELKOURA S, COOK A, PEÑA J M, et al. On the multi-dimensionality and sampling of air transport networks[J]. Transportation Research Part E, 2016, 94:95-109.
[13] LI B J, DU W B, LIU C, et al. Topologic and dynamic resilience model of Chinese airport network[C]//IEEE International Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2014:1460-1465.
[14] DU W B, LIANG B Y, YAN G, et al. Identifying vital edges in Chinese air route network via memetic algorithm[J]. Chinese Journal of Aeronautics, 2017, 30(1):330-336.
[15] CONG W, HU M H, DONG B, et al. Empirical analysis of airport network and critical airports[J]. Chinese Journal of Aeronautics, 2016, 29(2):512-519.
[16] WANG S J, CAO X, LI H Y, et al. Air route network optimization in fragmented airspace based on cellular automata[J]. Chinese Journal of Aeronautics, 2017, 30(3):1184-1195.
[17] GURTNER G, VITALI S, CIPOLLA M, et al. Multi-scale analysis of the european airspace using network community detection[J]. Plos One, 2014, 9(5):e94414.
[18] LORDAN O, SALLAN J M. Analyzing the multilevel structure of the European airport network[J]. Chinese Journal of Aeronautics, 2017, 30(2):554-560.
[19] DU W B, ZHOU X L, LORDAN O, et al. Analysis of the Chinese airline network as multi-layer networks[J]. Transportation Research Part E Logistics & Transportation Review, 2016, 89:108-116.
[20] HONG C, LIANG B Y. Analysis of the weighted Chinese air transportation multilayer network[C]//Intelligent Control & Automation, 2016:2318-2321.
[21] HONG C, ZHANG J, CAO X B, et al. Structural properties of the Chinese air transportation multilayer network[J]. Chaos, Solitons & Fractals, 2016, 86:28-34.
[22] JIANG J, HAN J H, ZHANG R, et al. The transition point of the Chinese multilayer air transportation networks[J]. International Journal of Modern Physics B, 2017, 31(26):1750186.
[23] VOLTES-DORTA A, RODRÍGUEZ-DÉNIZ H, SUAU-SANCHEZ P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays:Ranking the most critical airports[J]. Transportation Research Part A Policy & Practice, 2017, 96:119-145.
[24] HAN S C, LI P. Vulnerability assessment of navigation station equipment network based on complex network theory[C]//Conference of the IEEE Industrial Electronics Society. Piscataway, NJ:IEEE Press, 2017:6940-6945.
[25] WILKINSON S M, DUNN S, MA S. The vulnerability of the European air traffic network to spatial hazards[J]. Natural Hazards, 2012, 60(3):1027-1036.
[26] 方锦清. 从单一网络向《网络的网络》的转变进程-略论多层次超网络模型的探索与挑战[J]. 复杂系统与复杂性科学, 2016, 13(1):40-47. FANG J Q. From a single network to "Network of Networks" development process:some discussions on the exploration of multilayer supernetwork models and challenges[J]. Complex Systems and Complexity Science, 2016, 13(1):40-47(in Chinese).
[27] 中华人民共和国交通运输部令. 民用航空空中交通管理规则:CCAR-93-R5[S]. 北京:中华人民共和国交通运输部, 2017:132-168. Order of the Ministry of Transport of the People's Republic of China. Civil aviation air traffic management rules:CCAR-93-R5[S]. Beijing:Ministry of Transport of the People's of China, 2017:132-168(in Chinese).
[28] 金鸿章, 韦琦, 郭健, 等. 复杂系统的脆性理论及应用[M]. 西安:西北工业大学出版社, 2010:184-195. JIN H Z, WEI Q, GUO J, et al. The theory and application of brittleness in complex systems[M]. Xi'an:Northwestern Polytechnical University Press, 2010:184-195(in Chinese).
文章导航

/