流体力学与飞行力学

超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验

  • 张彦军 ,
  • 段卓毅 ,
  • 雷武涛 ,
  • 白俊强 ,
  • 徐家宽
展开
  • 1. 航空工业第一飞机设计研究院, 西安 710089;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2018-06-07

  修回日期: 2018-06-25

  网络出版日期: 2018-08-16

Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique

  • ZHANG Yanjun ,
  • DUAN Zhuoyi ,
  • LEI Wutao ,
  • BAI Junqiang ,
  • XU Jiakuan
Expand
  • 1. AVIC the First Aircraft Institute, Xi'an 710089, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-06-07

  Revised date: 2018-06-25

  Online published: 2018-08-16

摘要

为了实现绿色航空节能减排的目标,层流设计技术成为飞行器设计者的研究热点。对于跨声速客机而言,超临界自然层流机翼设计技术将显著减小飞行阻力,提升气动性能,减少燃油消耗和污染物排放。首先,基于高精度边界层转捩预测技术耦合翼型优化设计系统,实现超临界自然层流翼型设计;经过合理的翼型配置,形成超临界自然层流机翼。转捩数值模拟分析结果表明,超临界自然层流机翼的层流流动特性良好。然后,以比例为1:10.4的试验模型在荷兰高速低湍流度风洞进行边界层转捩风洞试验,使用温度敏感材料涂层(TSP)技术拍照获得机翼表面在不同马赫数、雷诺数和迎角工况下的层流-湍流分布。最后,通过超临界自然层流机翼边界层转捩试验结果,探讨了该类型机翼的转捩特性随来流参数的变化规律,总结了超临界自然层流机翼设计的关键因素。此外,该模型也可用来验证边界层转捩预测技术在超临界、高雷诺数工况下的预测精度。

本文引用格式

张彦军 , 段卓毅 , 雷武涛 , 白俊强 , 徐家宽 . 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019 , 40(4) : 122429 -122429 . DOI: 10.7527/S1000-6893.2018.22429

Abstract

To achieve the green aviation goal of energy conservation and emission reduction, laminar flow design technology has become the hot research area for aircraft designers. For transonic airliners, supercritical natural laminar flow wing design technology will significantly reduce the flight drag, improve aerodynamic performance, and decrease fuel consumption and pollutant emissions. Based on the high-precision boundary layer transition prediction technique, the airfoil optimization design system is applied to design the supercritical natural laminar flow airfoils. Then the airfoils are arranged rationally to form the supercritical natural laminar flow wing. Numerical simulations of the supercritical natural laminar flow wing show satisfactory laminar flow characteristics. Then, a model with ratio of 1:10.4 is used to test the boundary layer transition in high speed and low turbulence wind tunnel in Netherland. The Temperature Sensitive Paint (TSP) technique is used to photograph laminar-turbulent area distribution at different Mach numbers, Reynolds numbers and angels of attack. At last, the boundary layer transition characteristics of the supercritical natural laminar flow wing are discussed, and the key factors of the wing design are summarized. In addition, the model can also be used to verify the accuracy of the boundary layer transition prediction technique for supercritical and high Reynolds numbers condition.

参考文献

[1] HOLMES B J, OBARA C J. Observations and implications of natural laminar flow on practical airplane surfaces[J]. Journal of Aircraft, 1983, 20(12):993-1006.
[2] KHALID M, JONES D J. A summary of transonic natural laminar flow airfoil development at NAE:NRC No. 31608[R]. Ottawa:NRC, 1990.
[3] LEEJ D, JAMESON A. Natural-laminar-flow airfoil and wing design by adjoint method and automatic transition prediction:AIAA-2009-0897[R]. Reston, VA:AIAA, 2009.
[4] KRUSE M, WUNDERLICH T, HEINRICH L. A conceptual study of a transonic NLF transport aircraft with forward swept wings:AIAA-2012-3208[R]. Reston, VA:AIAA, 2012.
[5] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a ligh tweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[6] FUJINO M. Design and development of the Honda jet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[7] FAUCI R, NICOLÌ A, IMPERATORE B, et al. Wind tunnel tests of a transonic natural laminar flow wing:AIAA-2006-3638[R]. Reston, VA:AIAA, 2006.
[8] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[9] EPPINK J, WLEZIEN R. Data analysis for the NASA/Boeing hybrid laminar flow control crossflow experiment:AIAA-2011-3879[R]. Reston, VA:AIAA, 2011.
[10] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998(4):23-30(in Chinese).
[11] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, E R Q T, WANG Q, et al. The experiment of mechanism in hybrid laminar flow control[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese).
[12] 孙智伟, 白俊强, 高正红, 等. 现代超临界翼型设计及其风洞试验[J]. 航空学报, 2015, 36(3):804-818. SUN Z W, BAI J Q, GAO Z H, et al. Design and wind tunnel test investigation of the modern supercritical airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):804-818(in Chinese).
[13] HUANG J T, GAOZ H, ZHAO K, et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5):523-528.
[14] LI J, GAO Z H, HUANG J T, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2):309-318.
[15] 乔志德. 翼型的选择与设计[M]//方宝瑞. 飞机气动布局设计. 北京:航空工业出版社, 1997:499-540. QIAO Z D. Design and chosen of the airfoils[M]//FANG B R. Aircraft aerodynamic configuration design. Beijing:Aviation Industry Press, 1997:499-540(in Chinese).
[16] 乔志德, 赵文华, 李育斌, 等. 超临界自然层流冀型NPU-L72513的风洞试验研究[J]. 气动实验与测量控制, 1993, 7(2):40-45. QIAO Z D, ZHAO W H, LI Y B. The transonic wind tunnel test research for the supercritical natural laminar airfoil NPU-L72513[J]. Aerodynamic Experiment and Measurement & Control, 1993, 7(2):40-45(in Chinese).
[17] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164.
[18] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimication of natural-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[19] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomchinery, 2006, 128(3):413-422.
[20] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables-part Ⅱ:Test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3):423-434.
[21] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFDcodes[D]. Stuttgart:Universität Stuttgart, 2006.
[22] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[23] SMITHA M O, GAMBERONI N. Transition, pressuregradient, and stability theory:ES-26388[R]. Long Beach:Douglas Aircraft Company, 1956.
[24] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-7[R]. Delft:Delft University of Technology, 1956.
[25] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading edge separation bubbles[M]//CEBECI T. Numerical and physical aspects of aerodynamic flows Ⅱ. New York:Springer-Verlag, 1983:173-192.
[26] DRELA M, GILES M B. Viscous-inviscidanalysis of transonic and low-Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[27] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston, VA:AIAA, 2013.
[28] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512.
[29] MENTERF R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[30] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese).
[31] 尚金奎, 衷洪杰, 赵民, 等. TSP转捩探测技术在民机风洞试验中的应用研究[J]. 空气动力学学报, 2016, 34(3):341-353. SHANG J K, ZHONG H J, ZHAO M, et al. Application of TSP transition detection technique for a civil aircraft[J]. Acta Aerodynamica Sinica, 2016, 34(3):341-353(in Chinese).
[32] ZHU Y D, CHEN X, WU J Z, et al. Aerodynamic heating in transitional hypersonic boundary layers:Role of second-mode instability[J]. Physics of Fluid, 2018, 30(1):011701.
[33] MACK L M. Transition prediction and linear stability theory[C]//In AGARD Laminar-Turbulent Transition 22 p(SEE N78-1431605-34). Paris:AGARD, 1977.
[34] MASELAND J E J, LABAN M, VAN DER VEN H, et al. Development of CFD-based interference models for the DNW-HST transonic wind-tunnel:AIAA-2006-3639[R]. Reston, VA:AIAA, 2006.
[35] ELSENAARA, PHILIPSEN I, VAN DER POEL M. DNW-HST(High-Speed Tunnel) 50-year anniversary:AIAA-2010-0575[R]. Reston, VA:AIAA, 2010.
[36] 尚金奎, 王鹏, 陈柳生, 等. TSP技术在转捩检测中的应用研究[J]. 空气动力学学报, 2015, 33(4):464-469. SHANG J K, WANG P, CHEN L S, et al. Application research of TSP technique in transition detection[J]. Acta Aerodynamica Sinica, 2015, 33(4):464-469(in Chinese).
文章导航

/