为了提高电视制导导弹的定位精度,有必要研究大气折射效应的影响。基于大气折射率模型,采用高精度的4阶Runge-Kutta光线追迹方法,以定位误差和俯角误差为大气折射效应的评价标准,建立了电视制导导弹大气折射误差模型,并通过探空仪实测大气参数验证了模型的有效性以及精度测试验证了算法的可靠性。基于该模型,仿真分析了不同发射高度和俯角对定位精度的影响规律。研究结果发现:高海拔时,基于三段模型的大气折射误差要小于其他模型;相同高度下导弹发射的视在俯角扩大10倍,由大气折射造成的定位误差和俯角误差将分别缩小1 000倍和10倍;5 km高度、视在俯角为30°时的定位误差已减小到2 m以内。研究结果表明,该方法可以辅助电视制导导弹的设计,对提高其精确打击能力具有重要意义。
In order to improve the positioning accuracy of TV guided missiles, the atmospheric refraction effect was studied. Based on atmospheric refractive model, the high-precision fourth-Order Runge-Kutta ray-tracing method was presented to estimate the atmospheric refraction effect. The location error and angle error were proposed as evaluation parameters to establish atmospheric refraction error model of TV guided missiles. The precision test was performed to verify the reliability and accuracy of ray tracing calculations and atmospheric parameters from radiosonde show the validity of model. Simulations were performed based on five models in the altitude range of 0.5-5 km (0.5 km step length) and in the bow angle range of 2°-45°. The results show that the atmospheric refraction error based on the three-segment model is smaller than that of other models at high altitude. At the same altitude, the bow angle increases 10 times, and the location error and angle error decreases approximately 1000 and 10 times respectively. When the bow angle is 30° the location error is less than 2 m. This method can assist the design of TV guided missile and is significant to availably improve accurately fighting capacity.
[1] CHEN L, JIANG Y, ZHANG F, et al. Research on simulation of a certain TV-guided air to surface missile[J]. System Simulation Technology, 2012, 8(3):192-196.
[2] HE J F, XIAO R L, JI M, et al. Application of genetic algorithm in target image processing of TV guided missile[C]//MATEC Web of Conferences, 2016:01021.
[3] 刘泽乾. 电视制导导弹武器系统精确打击仿真研究及应用[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2006:7-10. LIU Z Q. Simulating approach and utilization on precision attack of television guiding missile weapon system[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2006:7-10(in Chinese).
[4] HUANG Y, DING W, LI H. Haze removal for UAV reconnaissance images using layered scattering model[J]. Chinese Journal of Aeronautics, 2016, 29(2):502-511.
[5] 王海涛, 佟惠军, 赖贵旺. 电视制导空地导弹干扰条件下杀伤概率研究[J]. 航空兵器, 2014(4):54-57. WANG H T, TONG H J, LAI G W. Research on kill probability of TV-guided air-to-ground missiles under jamming condition[J]. Aero Weaponry, 2014(4):54-57(in Chinese).
[6] AFOLABI L O, OLAWOLE E O, KEHINDE O O, et al. Monthly classification of tropospheric refraction and duct height near Sea-Level, Lagos State of Nigeria[J]. International Innovative Journal of Science, Environmental, Engineering and Technology, 2017, 8(8):432-439.
[7] LV W, YUAN K, HU S, et al. Effection of atmospheric refraction on opto-electronic engineering in arid area[J]. Infrared & Laser Engineering, 2015, 44(1):291-297.
[8] NAUENBERG M. Atmospheric refraction based on atmospheric pressure and temperature data[J]. American Mathematical Monthly, 2016, 8(10):192-195.
[9] SMITH-ROSE R L. Meteorological factors in radiocommunications at very short wave-lengths[J]. Nature, 1964, 204(4958):518-522.
[10] HE P, NUNALEE C G, BASU S, et al. Influence of heterogeneous refractivity on optical wave propagation in coastal environments[J]. Meteorology & Atmospheric Physics, 2015, 127(6):685-699.
[11] 杨长业, 李云, 高太长, 等. 大气折射对甚高频闪电定位的影响分析[J]. 气象科学, 2015, 35(5):574-580. YAN G C Y, LI Y, GAO T C, et al. Effect of atmospheric refraction on VHF lightning location[J]. Journal of the Meteorological Sciences, 2015, 35(5):574-580(in Chinese).
[12] ZENG Y, BLAHAK U, NEUPER M, et al. Radar beam tracing methods based on atmospheric refractive index[J]. Journal of Atmospheric & Oceanic Technology, 2014, 31(12):2650-2670.
[13] 梁毅. 对流层折射误差分析[D]. 成都:四川大学, 2006:11-16. LIANG Y. Analysis of refractive error in the troposphere[D]. Chengdu:Sichuan University, 2006:11-16(in Chinese).
[14] HOPFIELD H S. Tropospheric refraction effects on satellite range measurements:73A14750[R]. Washington,D.C.:NASA, 1972.
[15] VORONIN A A, ZHELTIKOV A M. The generalized Sellmeier equation for air[J]. Nature, 2017, 7(4958):46111.
[16] VORONTSOV M A, KULIKOV V A. Framework for analysis of joint impact of atmospheric turbulence and refractivity on laser beam propagation[C]//Imaging and Applied Optics, 2015:PM4C. 1.
[17] CHEN P, SUN T, SUN X. Autonomous orbit determination using epoch-differenced gravity gradients and starlight refraction[J]. Chinese Journal of Aeronautics, 2017, 30(5):1740-1749.
[18] YAN Z, WANG G, LI W, et al. Prediction of group delay distribution around receiving point using modified IRI model and IGRF model[J]. Chinese Journal of Aeronautics, 2011, 24(6):797-806.
[19] AKAMINE M, OKAMOTO K, GEE K L, et al. Effect of Nozzle-Plate distance on acoustic phenomena from supersonic impinging jet[J]. AIAA Journal, 2018, 56(5):1943-1952.
[20] GUO G, LIU H, ZHANG B. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space[J]. Applied Optics, 2016, 55(17):4741-4751.
[21] NISHIDATE Y. Closed-form analytical solutions for ray tracing in optically anisotropic inhomogeneous media[J]. Journal of the Optical Society of America A, 2013, 30(7):1373.
[22] XU L, CAI Y. Influence of altitude on aero-optic imaging deviation[J]. Applied Optics, 2011, 50(18):2949-2957.
[23] TORCHIGIN V P, TORCHIGIN A V. The momentum of an electromagnetic wave inside a dielectric derived from the Snell refraction law[J]. Annals of Physics, 2014, 351(9):444-446.
[24] 武鹏飞, 李玉剑, 邵士勇, 等. 基于格点化大气参数廓线模式的低仰角大气折射修正方法[J]. 光学学报, 2017, 37(6):31-41. WU P F, LI Y J, SHAO S Y, et al. Low elevation atmospheric refraction correction method based on gridding atmospheric parameter profile mode[J]. Acta Optica Sinica, 2017, 37(6):31-41(in Chinese).