自由翻滚故障卫星抓捕是航天器在轨服务及空间碎片清理的基础。由于难以确定固定抓捕点及目标运动参数不确定,传统机械臂抓捕方法无法适用类似自由翻滚故障卫星的空间非合作目标。提出一种具有鲁棒性的外包络抓捕方法及抓捕路径优化方案。外包络抓捕方式能够适用于自由翻滚故障卫星抓捕问题,其特点在于,第一,由抓捕末端执行器构成的抓捕包络可以包络空间目标,约束其运动并最终实现抓捕,因此不需要固定抓捕点;第二,末端执行器构成的抓捕包络,能够约束故障卫星运动,而两者之间的摩擦可以有效消除两者之间的相对运动最终成功抓捕翻滚目标。进一步,针对外包络抓捕方法,提出了一种最小燃料消耗及最小抓捕扰动的机械臂抓捕路径。为验证外包络抓捕方法的有效性,构建旋转立方星抓捕地面实验,并利用数值仿真验证外包络抓捕机械臂最优路径规划,仿真结果验证了所提出方法的有效性。
Capture of tumbling malfunction satellites is the basis of on-orbit servicing of spacecraft. As there is no fixed grasping point or rendezvous dock and precise motion parameters can be hardly obtained, traditional capture methods can hardly be applied in grasping of the tumbling malfunctional satellite. In this paper, a novel robust outside envelope capture approach is proposed for the tumbling malfunctional satellite. With the approach, the non-cooperative targets such as the tumbling malfunctional satellite can be captured because first, the capture envelop that is formed by the capture end-effector can constraint the motion of the malfunctional satellite, and thus there is no need for a fixed grasping point; second, the slight friction between the grasping end-effector and the malfunctional satellite can decrease the relative rotation motion between the two. Based on the envelop capture approach, the grasping trajectory for the robotic arm is optimized considering the fuel cost and disturbance to the base of the satellite. To verify the effectiveness of the grasping approach, the proposed method is applied in the tumbling cube-sat capture. The experiment and simulation results demonstrate the advantage of the proposed method.
[1] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1): 38-50. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative tar-gets[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(1): 38-50 (in Chinese).
[2] BIESBROEK R, The e. deorbit study in the concurrent de-sign facility[C]//Workshop on Active Space Debris Removal, 2012.
[3] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报. 2012, 33(12): 2347-2354. ZHANG F H, FU Y L, WAGN S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronaustica et Astronautica Sinica. 2012, 33(12): 2347-2354 (in Chinese).
[4] FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8): 1-26.
[5] SHAN M, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Sciences, 2016, 80: 18-32.
[6] YOSHIDA K, NAKANISHI H. The tako (target collaborativize) flyer: A new concept for future satellite servicing[C]//International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001: 18-22.
[7] BOGE T, WIMMER T, MA O, et al. Epos—A robotics-based hardware-in-the- loop simulator for simulating satellite rvd operations[C]//Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), 2010.
[8] 丁希仑, 战强, 解玉文. 自由漂浮的空间机器人系统的动力学奇异特性分析及其运动规划[J]. 航空学报, 2001, 22(5): 474-477. DING X L, ZHAN Q, XIE Y W. Dynamic singularity analysis and motion planning of free-floating space robot systems[J]. Acta Aeronaustica et Astronautica Sinica. 2001, 22(5): 474-477 (in Chinese)
[9] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7): 1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assem-bly with captured non-cooperative targets on orbit[J]. Acta Aeronaustica et Astronautica Sinica, 2013, 34(7): 1520-1530 (in Chinese).
[10] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9): 2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parameters for space un-cooperative targets[J]. Acta Aeronaustica et Astronautica Sinica. 2016, 37(9): 2799-2808 (in Chinese).
[11] 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 37(9): 281-289. YU D T, WANG H, SUN F Y. Optimal evasive maneuverable strategy with potential threatening area being considered[J]. Acta aeronatica et Astronautica sinica, 2017, 37(9): 281-289 (in Chinese).
[12] LIU H, LIANG B, WANG X, et al. Autonomous path plan-ning and experiment study of free-floating space robot for spinning satellite capturing[J]. Journal of Intelligent & Robotic Systems, 2008, 51(3): 303-331.
[13] MAEDA Y, KODERA N, EGAWA T. Caging-based grasping by a robot hand with rigid and soft parts[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2012: 5150-5155.
[14] GODAGE I S, BRANSON D T, GUGLIELMINO E, et al. Shape function-based kinematics and dynamics for variable length continuum robotic arms [C]//IEEE International Conference on Robotics and Automation (ICRA), 2011: 452-457
[15] WAN W, RUI F, SHIMOSAKA M, et al. Grasping by caging: A promising tool to deal with uncertainty[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2012: 5142-5149.
[16] WANG M, LUO J, WALTER U. Trajectory planning of free-floating space robot using particle swarm optimization (PSO)[J]. Acta Astronautica, 2016, 112: 77-88.
[17] LIU H, LIANG B, WANG X, et al. Autonomous path plan-ning and experiment study of free-floating space robot for spinning satellite capturing[J]. Journal of Intelligent & Robotic Systems, 2008, 51(3): 303-331.