流体力学与飞行力学

基于流场/声爆耦合伴随方程的超声速公务机声爆优化

  • 黄江涛 ,
  • 张绎典 ,
  • 高正红 ,
  • 余婧 ,
  • 周铸 ,
  • 余雷
展开
  • 1. 中国空气动力研究与发展中心, 绵阳 621000;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2018-07-02

  修回日期: 2018-07-19

  网络出版日期: 2018-08-01

基金资助

国家自然科学基金(11402288);国家重点研发计划(2016YFB0200704)

Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations

  • HUANG Jiangtao ,
  • ZHANG Yidian ,
  • GAO Zhenghong ,
  • YU Jing ,
  • ZHOU Zhu ,
  • YU Lei
Expand
  • 1. China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-07-02

  Revised date: 2018-07-19

  Online published: 2018-08-01

Supported by

National Natural Science Foundation of China (11402288); National Key Research and Development Program of China(2016YFB0200704)

摘要

基于自主研发的大规模并行结构化网格CFD求解器PMB3D以及并行化伴随方程求解器PADJ3D,开展了流场/声爆伴随方程的求解研究。首先采用标准算例,对内部CFD代码PMB3D软件和声爆预测代码进行了声爆计算可信度验证,以及声爆强度对近场声压梯度的校核。针对并行环境下多块对接网格的近场声压提取操作的复杂性,提出了"包围盒"的方法实现并行环境下近场声压装配单元编号、网格块编号以及对应的进程编号确定,基于声爆计算坐标将并行传递的数据进行一维排序,为声爆预测、伴随方程以及梯度求解提供输入条件。通过线性插值雅克比矩阵实现均匀坐标系梯度信息向非均匀坐标转换,并进一步根据结构化网格特征提出了插值原则,简化了近场声压转换雅克比矩阵的变分。通过装配单元记录,实现声爆强度对流场守恒变量的变分结果向各个进程装配,将装配结果作为流场伴随方程的右端项实现流场声爆耦合伴随方程的求解。此外,对小型超声速公务机开展了声爆优化,对比分析了设计前后的声压及其频谱特性。

本文引用格式

黄江涛 , 张绎典 , 高正红 , 余婧 , 周铸 , 余雷 . 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019 , 40(5) : 122505 -122505 . DOI: 10.7527/S1000-6893.2018.22505

Abstract

Based on the PMB3D solver for large-scale parallel structured CFD grid and the PADJ3D solver for parallel adjoint equation (in-house code), a study of flow/sonic boom coupled adjoint equations is carried out. Firstly, the reliability of the sonic boom calculation for the PMB3D and the reliability of the sonic boom prediction are verified, and the precision of sonic boom signal to the gradient of the near-field input signal is validated. To address the complex extraction of near-field sonic boom signal in multi-block grid, a "sonic boom box" approach is proposed providing cell numbering of near-field sound pressure assembly, grid block numbering, and corresponding process number determination in parallel environment. Then based on the calculated coordinates of sonic boom, the data passed in parallel environment are one-dimensionally sorted, providing input conditions for sonic boom prediction, adjoint equations, and gradient solutions. The Jacobi matrix of linear interpolation is used to transform the gradient information of uniform coordinate system to non-uniform coordinates. Furthermore, the principle of improved interpolation is proposed in accordance to the features of the structural grid, simplifying the variation of the near-field transformation in Jacobi matrix. By recording the assembly unit, the derivative of the sonic boom signal on flow field variable is assembled to the grid cell, and the assembled result is used as the right term for the flow field adjoint equations to obtain the solution of the flow/sonic boom coupled adjoint equations. The level of sonic boom is optimized for small supersonic business jets, and the contours of typical cross-sectional flow field pressure before and after the design are compared and the differences between the two results are analyzed.

参考文献

[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2057-2528(in Chinese).
[2] CHUDOBA B, COLEMAN G, ROBERTS K, et al. What price supersonic speed?-A design anatomy of supersonic transportation-Part 1:AIAA-2007-0851[R]. Reston, VA:AIAA, 2007.
[3] COWART R A, GRINDLE T. An overview of Gulfstream/NASA Quiet SprikeTM flight test program:AIAA-2008-0123[R]. Reston, VA:AIAA, 2008.
[4] WALGE H R, NELSON C, BONET J. Supersonic vehicle systems for 2020 to 2030 timeframe:AIAA-2010-4930[R]. Reston, VA:AIAA, 2010.
[5] 王元元, 申洋. NASA稳步推进低声爆超声速客机验证机计划[J]. 国际航空, 2014(5):76-77. WANG Y Y, SHEN Y. NASA works toward low-boom supersonic demonstrator[J]. International Aviation, 2014(5):76-77(in Chinese).
[6] NADARAJAH S K, JAMESON A, ALONSO J J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow:AIAA-2002-5547[R]. Reston, VA:AIAA, 2002.
[7] RALLABHANDI S K. Sonic boom adjoint methodology and its applications:AIAA-2011-3497[R]. Reston, VA:AIAA, 2011.
[8] 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11):1980-1986. FENG X Q, LI Z K, SONG B F. A research on inverse sesign method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1980-1986(in Chinese).
[9] 冯晓强, 李占科, 宋笔锋. 超声速飞机低音爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG X Q, LI Z K, SONG B F. Hybrid optimization approach research or low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese).
[10] 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报, 2018, 39(1):121458. WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmarkcases[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121458(in Chinese).
[11] 刘刚, 肖中云, 王建涛, 等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报, 2015, 33(2):192-197. LIU G, XIAO Z Y, WANG J T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerodynamica Sinica, 2015, 33(2):192-197(in Chinese).
[12] THOMAS C. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972.
[13] PLOTKIN K J. Computer models for sonic boom analysis:PCBoom4, CABoom, BooMap, COR-Boom:WR 02-11[R]. Arlington, VA:Wyle, 2002.
[14] RALLABHANDI S K. Advanced sonic boom prediction using augmented Burger's equation:AIAA-2011-1278[R]. Reston, VA:AIAA, 2011.
[15] CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Avstin, TX:University of Texas at Austin, 1995.
[16] 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报, 2018, 39(7):122039. ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):122039(in Chinese).
[17] OZCER I A. Sonic boom prediction using euler/full potential methodology:AIAA-2007-3069[R]. Reston, VA:AIAA, 2007.
[18] RALLABHANDI S K, LOUBEAU A. Propagation summary of the second AIAA Sonic Boom Prediction Workshop:AIAA-2017-3257[R]. Reston, VA:AIAA, 2017.
[19] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[20] HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348.
[21] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multi-block domain decompositions[C]//Proceedings 6th International Conference on Numerical Grid Generation in Computational Field Simulations, 1998.
文章导航

/