针对现有的多目标跟踪(MTT)算法在强杂波环境下会出现严重的性能衰退,利用目标的幅度及多普勒特征,基于随机有限集(RFS)理论,提出了一种幅度及多普勒信息辅助的δ广义标签多伯努利(ADI-δ-GLMB)滤波器。首先,利用幅度及多普勒信息对目标状态进行扩展,在此基础上建立了新的量测似然函数。然后,基于δ-GLMB滤波器框架推导了新的更新方程。最后,进行仿真验证,结果表明:强杂波下,ADI-δ-GLMB滤波器跟踪性能明显优于δ-GLMB滤波器,估计精度及稳定性更高,且计算量更低;同信息辅助的概率假设密度(PHD)、多目标多伯努利(MeMBer)滤波器相比,ADI-δ-GLMB滤波器状态估计精度更高。
To address the severe performance degradation of the existing Multi-Target Tracking (MTT) in high clutter environment, a novel Amplitude and Doppler Information assisted δ-Generalized Labeled Multi-Bernoulli (ADI-δ-GLMB) filter is proposed based on the theory of Random Finite Set (RFS). Firstly, the amplitude and Doppler information isintroduced to expand the target state, and a new function of measurement likelihood is established on this basis. Then, a new update equation is deduced based on the framework of the δ-GLMB filter. Finally, the simulation results show that the tracking performance of the proposed ADI-δ-GLMB filter is significantly better than that of the standard δ-GLMB filter, displaying higher estimation accuracy and stability, and a lower computational cost in dense clutter environment. In addition, the estimation accuracy of the proposed ADI-δ-GLMB filter is higher than that of the information assisted Probability Hypothesis Density (PHD) and Multi-target Multi-Bernoulli (MeMBer) filter.
[1] SURESH R, TAO F, VOTION J, et al. Machine learning approaches for multi-sensor data pattern recognition:K-means, deep neural networks, and multi-layer K-means[C]//2018 AIAA Information Systems-AIAA Infotech@Aerospace, AIAA SciTech Forum. Reston, VA:AIAA, 2018:1-13.
[2] MAHLER R. Statistical multisource-multitarget information fusion[M]. Boston:Artech House, 2007:119-154.
[3] MAHLER R. Multi-target Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178.
[4] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace & Electronic Systems, 2007, 43(4):1523-1543.
[5] DONALD L, YAAKOV B S. Automated tracking with target amplitude information[C]//American Control Conference. Piscataway, NJ:IEEE Press, 1990:2875-2880.
[6] WANG X, MUSICKI D, ELLEM R, et al. Efficient and enhanced multi-target tracking with Doppler measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4):1400-1417.
[7] 徐洋, 徐晖, 安玮, 等. 一种利用信号幅度信息的光学传感器像平面GM-PHD滤波算法[J]. 宇航学报, 2012, 33(4):478-486. XU Y, XU H, AN W, et al. A GM-PHD filter using signal amplitude information for image plane of optical sensor[J]. Journal of Astronautics, 2012, 33(4):478-486(in Chinese).
[8] CLARK D, RISTIC' B, VO B N, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1):26-37.
[9] 袁常顺, 王俊, 孙进平, 等. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2):464-471. YUAN C S, WANG J, SUN J P, et al. A multi-bernoulli filtering algorithm using amplitude information[J]. Journal of Electronics & Information Technology, 2016, 38(2):464-471(in Chinese).
[10] JU H Y, DU Y K, BAE S H, et al. Joint initialization and tracking of multiple moving objects using Doppler information[J]. IEEE Transactions on Signal Processing, 2011, 59(7):3447-3452.
[11] 尉强, 刘忠. 多普勒盲区下基于GM-PHD的雷达多目标跟踪算法[J]. 雷达学报, 2017, 6(1):34-42. WEI Q, LIU Z. A radar multi-target tracking algorithm based on gaussian mixture PHD filter under Doppler blind zone[J]. Journal of Radars, 2017, 6(1):34-42(in Chinese).
[12] 吴卫华, 江晶, 冯讯, 等. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法[J]. 电子与信息学报, 2015, 37(6):1490-1494. WU W H, JIANG J, FENG X, et al. Multi-target tracking algorithm based on Gaussian mixture cardinalized probability hypothesis density for pulse Doppler radar[J]. Journal of Electronics & Information Technology, 2015, 37(6):1490-1494(in Chinese).
[13] VO B N, VO B T, PHUNG D. Labeled random finite sets and the bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24):6554-6567.
[14] MAHLER R. A brief survey of advances in random-set fusion[C]//International Conference on Control, Automation and Information Sciences. Piscataway, NJ:IEEE Press, 2015:62-67.
[15] WEI Y, MENG J, HOSEINNEZHAD R. The multiple model Vo-Vo filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2):1045-1054.
[16] 邱昊, 黄高明, 左炜, 等. 基于标签多伯努利滤波的衍生目标跟踪算法[J]. 航空学报, 2015, 36(9):3012-3019. QIU H, HUANG G M, ZUO W, et al. Spawned target tracking algorithm based on labeled multi-Bernoulli filtering[J]. Acta Aeronautica et Astronautica Sinica, 2015, 26(9):3012-3019(in Chinese).
[17] LI S Q, YI W, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2):278-293.
[18] REUTER S, VO B T, VO B N, et al. The labelled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12):3246-3260.
[19] VO B N, VO B T, HOANG H G. An efficient implementation of the generalized labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2017, 65(8):1975-1987.
[20] RISTIC B, VO B N, CLARK D, et al. A metric for performance evaluation of multi-target tracking algorithms[J]. IEEE Transactions on Signal Processing, 2011, 59(7):3452-3457.