电子电气工程与控制

基于最优误差动力学的时间角度控制制导律

  • 李斌 ,
  • 林德福 ,
  • 何绍溟 ,
  • 白冰
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 无人机自主控制技术北京市重点实验室, 北京 100081;
    3. 北京宇航系统工程研究所, 北京 100076

收稿日期: 2018-04-17

  修回日期: 2018-05-16

  网络出版日期: 2018-08-01

基金资助

国家自然科学基金(U1613225)

Time and angle control guidance law based on optimal error dynamics

  • LI Bin ,
  • LIN Defu ,
  • HE Shaoming ,
  • BAI Bing
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of UAV Autonomous Control, Beijing Institute of Technology, Beijing 100081, China;
    3. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Received date: 2018-04-17

  Revised date: 2018-05-16

  Online published: 2018-08-01

Supported by

National Natural Science Foundation of China (U1613225)

摘要

针对带有攻击时间和终端攻击角度约束的导弹制导问题,设计了一种基于最优误差动力学的时间角度控制制导律,并给出了明确的性能指标。推导广义最优角度控制制导律作用下的剩余飞行时间估算表达式,在广义最优角度控制制导律的基础上增加攻击时间误差反馈项,将攻击时间误差看做跟踪误差,设计的制导律使跟踪误差以最优模式在有限时间内收敛到零,最终实现攻击时间和终端攻击角度的共同控制。对不同参数下的情况进行仿真,验证了所提制导律的有效性。

本文引用格式

李斌 , 林德福 , 何绍溟 , 白冰 . 基于最优误差动力学的时间角度控制制导律[J]. 航空学报, 2018 , 39(11) : 322215 -322225 . DOI: 10.7527/S1000-6893.2018.22215

Abstract

To solve the missile guidance with constraints of impact time and terminal impact angle, a time and angle control guidance law based on optimal error dynamics is designed, and a definite performance index is given. The expression of time to go estimation under generalized optimal angle control guidance law is derived. To reach zero tracking error in the finite time with the optimal convergence pattern, the designed guidance law adds the feedback of impact time error to the generalized guidance law of optimal angle control and considers the impact time error as the tracking error, achieving the joint control of the impact time and the terminal impact angle. The effectiveness of the proposed guidance law is validated through numerical simulations under different conditions.

参考文献

[1] RICHARDS A, BELLINGHAM J, TILLERSON M. Coordination and control of multiple UAVs[C]//AIAA Guidance, Navigation and Control Conference Reston, VA: AIAA, 2002.
[2] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[3] 蔡洪, 胡正东, 曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2): 315-323. CAI H, HU Z D, CAO Y. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics, 2010, 31(2): 315-323 (in Chinese).
[4] 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 17-29. ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautical et Astronautica Sinica, 2017, 38(1): 17-29 (in Chinese).
[5] ZHAO S Y, ZHOU R, WANG C. Design of time-constrained guidance laws via virtual leader approach[J]. Chinese Journal of Aeronautics, 2010, 23(1): 103-108.
[6] 张友安, 马国欣, 王兴平. 多导弹时间协同制导:一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6): 1109-1118. ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles: a leader-follower strategy[J]. Acta Aeronautical et Astronautica Sinica, 2009, 30(6): 1109-1118 (in Chinese).
[7] JEON I S, LEE J I. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control and Dynamics, 2010, 33 (1): 275-280.
[8] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611. ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautical et Astronautica Sinica, 2008, 29(6): 1605-1611 (in Chinese).
[9] 杨哲, 林德福, 王辉. 带视场角限制的攻击时间控制制导律[J]. 系统工程与电子技术, 2016, 38(9): 2122-2128. YANG Z, LIN D F, WANG H. Impact time control guidance law with field-of-view limit[J]. Systems Engineering and Electronics, 2016, 38(9): 2122-2128 (in Chinese).
[10] HE S, WANG W, LIN D. Consensus-based two-stage salvo attack guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, PP(99): 1-1.
[11] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
[12] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 724-732.
[13] 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautical et Astronautica Sinica, 2014, 35(3): 848-856 (in Chinese).
[14] ERER K S, MERTTOPÇUOGLU O. Indirect impact-angle-control against stationary targets using biased Pure proportional navigation[J]. Journal of Guidance, Control and Dynamics, 2012, 35(2): 700-704.
[15] ERER K S, OZGOREN M K. Control of impact angle using biased proportional navigation[C]//AIAA Guidance, Navigation, and Control. Reston, VA: AIAA, 2013.
[16] HE S, LIN D, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41: 199-208.
[17] 郭建国, 韩拓, 周军, 等. 基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2): 210-219. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautical et Astronautica Sinica, 2017, 38(2): 210-219 (in Chinese).
[18] LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.
[19] HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
[20] LEE J I, JEON I S, TAHK M J. Guidance law using augmented trajectory-reshaping command for salvo attack of multiple missiles[C]//Proceedings of the International Control Conference, 2006.
[21] 张友安, 马培蓓. 带有攻击角度和攻击时间控制的三维制导[J]. 航空学报, 2008, 29(4): 1020-1026. ZHANG Y A, MA P B. Three-dimensional guidance law with impact angle and impact time constraints[J]. Acta Aeronautical et Astronautica Sinica, 2008, 29(4): 1020-1026 (in Chinese).
[22] HE S, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control and Dynamics, 2018, 41(7): 1624-1633.
文章导航

/