流体力学与飞行力学

考虑力/热/结构多场耦合效应的飞行弹道预测

  • 代光月 ,
  • 曾磊 ,
  • 刘深深 ,
  • 冯毅 ,
  • 唐伟 ,
  • 桂业伟
展开
  • 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2018-05-21

  修回日期: 2018-06-21

  网络出版日期: 2018-07-27

基金资助

国家自然科学基金(11472295,11702315)

Prediction of flight trajectory considering fluid-thermal-structural coupling effect

  • DAI Guangyue ,
  • ZENG Lei ,
  • LIU Shenshen ,
  • FENG Yi ,
  • TANG Wei ,
  • GUI Yewei
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-05-21

  Revised date: 2018-06-21

  Online published: 2018-07-27

Supported by

National Natural Science Foundation of China(11472295,11702315)

摘要

高超声速飞行器气动力/热/结构多场耦合的一个典型效应是热弹性变形,从而引起气动力变化及配平变化,并进一步改变飞行弹道与控制方案。将FL-CAPTER高超声速多场耦合分析软件拓展至飞行力学领域,建立了考虑气动力/热/结构多场耦合效应影响的弹道模拟新方法,并针对给定舵偏角下自主配平控制的助推-压缩楔组合体外形,开展不同耦合时间尺度下的飞行弹道特性研究,初步探讨分析了多场耦合效应对飞行弹道的影响。研究结果表明:对于助推-压缩楔组合体外形,考虑多场耦合效应后,变形将带来配平迎角增大,飞行器升力、阻力同时增大,升阻比降低,弹道飞行高度增加,飞行马赫数降低,航程变短等一系列影响;同时,气动/弹道耦合计算时间步长的选取对弹道仿真结果存在较大影响,当步长选取过大时,会带来非物理振荡,导致计算结果失真;所提出的基于变形量回溯插值技术的双时间步修正方法能够有效提高弹道仿真精度,削弱因时间步长选取过大造成的非物理振荡。相关研究对认识多场耦合效应与飞行弹道的耦合机理及弹道设计等可提供重要参考。

本文引用格式

代光月 , 曾磊 , 刘深深 , 冯毅 , 唐伟 , 桂业伟 . 考虑力/热/结构多场耦合效应的飞行弹道预测[J]. 航空学报, 2018 , 39(12) : 122346 -122346 . DOI: 10.7527/S1000-6893.2018.22346

Abstract

A typical effect of the fluid-thermal-structural coupling of near-space hypersonic vehicles is thermoelastic deformation, which changes the aerodynamic force and trim, and further changes the flight trajectory and control scheme. In this paper, the in-house FL-CAPTER coupling software is extended to the field of flight mechanics, and a new method of trajectory simulation considering fluid-thermal-structural coupling effect is developed. A preliminary study of the influence of the fluid-thermal-structural coupling effect on flight trajectory at different coupling time scales is then carried out based on the boost-compression-wedge shaped configuration with self-trim control under given deflections of control surfaces. The results show that after taking the coupling effect into account, the deformation of the configuration will increase the trimming angle, the lift, the drag, and the flight height, decrease the lift-to-drag ratio, the Mach number, and shorten the range. At the meantime, the choice of the time step size of aerodynamic/trajectory coupling has a great influence on the trajectory simulation; and non-physical oscillations will appear when the step size is too big, distorting the calculated results. The proposed modification method based on the deformation interpolation technology can effectively improve the accuracy of the trajectory simulation, and weaken the non-physical oscillations caused by the excessively large time step size. Related research can provide important reference to the understanding of the coupling mechanism of the multi-field coupling effect and flight trajectory as well as the ballistic design.

参考文献

[1] ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10):34-43, 64.
[2] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[3] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structure study of aerodynamically heated leading edges:AIAA-1988-2245[R]. Reston, VA:AIAA, 1988.
[4] WIETING A R, DECHAUMPHAI P, BEY K S. Aplication of integrated fluid-thermal-structure analysis methods[C]//16th Congress of the International Council of the Aeronautical Science, 1988.
[5] MICHOPOULOS J G, FARHAT C. Modeling and simulation of multiphysics systems[J]. Journal of Computing and Information Science in Engineering, 2005, 5(3):198-213.
[6] CULLER A J, MCNAMARA J J. Studies on fluid-thermal-structural coupling for aerothermalelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738.
[7] LOHNER R, YANG C, CEBRAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids:AIAA-1998-2419[R]. Reston, VA:AIAA, 1998.
[8] 桂业伟, 刘磊, 杜雁霞. 热防护系统耦合分析方法与应用[J]. 现代防御技术, 2014, 42(4):9-14. GUI Y W, LIU L, DU Y X. Coupled analysis methods and applications of thermal protection system[J]. Modern Defence Technology, 2014, 42(4):9-14(in Chinese).
[9] 桂业伟, 刘磊, 代光月, 等. 高超飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status on hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[10] 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006, 23(2):41-46. ZHANG W W, XIA W, YE Z Y. A numerical method for hypersonic aerothermoelasticity[J]. Engineering Mechanics, 2006, 23(2):41-46(in Chinese).
[11] 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3):400-409. ZHANG B, HAN J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):400-409(in Chinese).
[12] 周印佳, 孟松鹤, 解维华, 等. 高超声速飞行器热环境与热结构传热的多场耦合数值研究[J]. 航空学报, 2016, 37(9):2739-2748. ZHOU Y J, MENG S H, XIE W H, et al. Muti-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748(in Chinese).
[13] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4):422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4):422-427(in Chinese).
[14] 季卫栋, 王江峰, 樊孝峰, 等. 高超声速流场与结构温度场一体化计算方法[J]. 航空动力学报, 2016, 31(1):153-160. JI W D, WANG J F, FAN X F, et al. Algorithms for hypersonic fluid-structural-thermal integrated[J]. Journal of Aerospace Power, 2016, 31(1):153-160(in Chinese).
[15] 王江峰, 伍贻兆, 季卫栋, 等. 高超声速复杂气动问题数值方法研究进展[J]. 航空学报, 2015, 36(1):159-175. WANG J F, WU Y Z, JI W D, et al. Progress in numerical simulation techniques of hypersonic aerodynamic problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):159-175(in Chinese).
[16] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5):1047-1051. GUI Y W, LIU L, GENG X R, et al. Study on the computation strategy and method of aerodynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5):1047-1051(in Chinese).
[17] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12):2461-2465. YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars Pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12):2461-2465(in Chinese).
[18] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度场的影响研究[J]. 空气动力学学报, 2015, 33(1):31-36. LIU L, GUI Y W, GENG X R, et al. Study on the temperature field of hypersonic vehicle strucuture with aerothermoelasticity deformation[J]. Acta Aerodynamica Sinica, 2015, 33(1):31-36(in Chinese).
[19] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11):221165. LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):221165(in Chinese).
[20] DAI G Y, ZENG L, JIA H Y, et al. Study on the influence of aerothermoelasticity deformation on 2-D hypersonic inlet[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017.
[21] KEMP N H, RIDDEL F R. Heat transfer to satellite vehicles re-entering the atmosphere[J]. Journal of Jet Propulsion, 1957, 27(2):132-137.
[22] 冯毅. 高超声速飞行器气动布局多学科设计优化研究[D]. 北京:清华大学, 2013. FENG Y. Multidisciplinary design optimization of aerodynamic configuration for hypersonic vehicles[D]. Beijing:Tsinghua University, 2013(in Chinese).
文章导航

/