流体力学与飞行力学

高效非结构网格变形与流场插值方法

  • 郭中州 ,
  • 何志强 ,
  • 赵文文 ,
  • 陈伟芳
展开
  • 浙江大学 航空航天学院, 杭州 310027

收稿日期: 2018-06-05

  修回日期: 2018-06-14

  网络出版日期: 2018-07-20

基金资助

国家自然科学基金(11502232,11572284,51575487,61627901);国家"973"计划(2014CB340201)

Efficient mesh deformation and flowfield interpolation method for unstructured mesh

  • GUO Zhongzhou ,
  • HE Zhiqiang ,
  • ZHAO Wenwen ,
  • CHEN Weifang
Expand
  • School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received date: 2018-06-05

  Revised date: 2018-06-14

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China (11502232, 11572284, 51575487, 61627901); National Basic Research Program of China (2014CB340201)

摘要

非结构动网格在含动边界的非定常流动模拟中应用十分广泛。为了提高网格变形的计算效率和对复杂外形的适用性,发展了高效的K近邻-径向基函数(KNN-RBF)动网格方法。并采用高效的交界面节点一致性方法实现了网格变形的并行化。由于边界的运动和变形形式多种多样,在自主开发的计算流体力学(CFD)程序中实现了动网格的用户自定义函数(UDF)功能模块,可以灵活地设置此类问题中的边界运动。在模拟大变形问题时,采用了全局网格重构的策略对网格质量较差的区域进行处理。提出了快速查找新旧网格最近点的两级KD(K-Dimensional)树方法,并根据最近点在新旧网格间进行流场插值。从而建立了高效健壮的并行流场插值方法。通过对若干算例进行模拟,验证了所发展方法的正确性和健壮性。

本文引用格式

郭中州 , 何志强 , 赵文文 , 陈伟芳 . 高效非结构网格变形与流场插值方法[J]. 航空学报, 2018 , 39(12) : 122411 -122411 . DOI: 10.7527/S1000-6893.2018.22411

Abstract

Unstructured dynamic mesh is widely applied to the simulation of unsteady flow problems containing boundary motions. To improve the efficiency of mesh deformation as well as the capability of handling complex configurations, an efficient K Nearest Neighbor-Radial Basis Functions (KNN-RBF) mesh deformation method is proposed, along with an efficient method to keep the nodes on zonal boundaries consistent. Due to the various forms of boundary motion and deformation, a User Defined Function (UDF) module is developed in the in-house Computational Fluid Dynamics (CFD) code, and flexible manipulation of boundary motion is available when simulating these problems. When simulating cases with large deformations, a global mesh regeneration method is adopted to remedy the regions containing low quality cells. A fast searching of the nearest points between the old mesh and new mesh is realized using the two-level K-Dimensional (KD) tree method, and the interpolation of the flowfiled is accomplished using the nearest points. Thus an efficient and robust interpolation method is developed along with parallel processing. Several cases are simulated to validate the effectiveness and robustness of the proposed method.

参考文献

[1] SALAS M D. Digital flight:The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2-3):479-505.
[2] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[3] CAVALLO P A, SINHA N, FELDMAN G M. Parallel unstructured mesh adaptation method for moving body applications[J]. AIAA Journal, 2005, 43(9):1937-1945.
[4] PANAGIOTOPOULOS E E, KYPARISSIS S D. CFD transonic store separation trajectory predictions with comparison to wind tunnel investigations[J]. International Journal of Engineering, 2010, 3(6):538-553.
[5] LUO X B, BAYSAL O. Computational simulation of hypersonic vehicle separation from its booster:AIAA-1999-4807[R]. Reston, VA:AIAA, 1999.
[6] BARTELS R E. Mesh strategies for accurate computation of unsteady spoiler and aeroelastic problems[J]. Journal of Aircraft, 2015, 37(3):521-525.
[7] BAUM J, LUO H, LOEHNER R, et al. Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16 fighter:AIAA-1997-0166[R]. Reston, VA:AIAA, 1997.
[8] 刘君, 白晓征, 郭正. 非结构动网格计算方法[M]. 长沙:国防科技大学出版社, 2009:120-122. LIU J, BAI X Z, GUO Z. Dynamic unstructured grid method[M]. Changsha:National University of Defense Technology Press, 2009:120-122(in Chinese).
[9] 白晓征. 包含运动界面的爆炸流场数值模拟方法及其应用[D]. 长沙:国防科技大学, 2009:89-95. BAI X Z. Numerical simulation method and its application of explosion flow field involving moving interface[D]. Changsha:National University of Defense Technology, 2009:89-95(in Chinese).
[10] 陈坚强, 陈琦, 袁先旭, 等. 舵面操纵动态响应的数值模拟[J]. 力学学报, 2013, 45(2):302-306. CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation study on dynamics response under rudder control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):302-306(in Chinese).
[11] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling method in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(1):376-417(in Chinese).
[12] 常兴华. 基于动态混合网格的非定常计算方法及生物外流数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2007:48-72. CHANG X H. Unsteady numerical method based on dynamic hybrid mesh and simulation of bio-fluid flows[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:48-72(in Chinese).
[13] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1):15-26. WU Y Z, TIAN S L, XIA J. Unstructured grid methods for unsteady flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):15-26(in Chinese).
[14] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[15] 陈龙, 伍贻兆, 夏健. CFD/CSD紧耦合及新型动网格方法在气动弹性模拟中的应用[J]. 计算力学学报, 2011, 28(5):807-812. CHEN L, WU Y Z, XIA J. CFD/CSD closely coupled and new dynamic grid method in application of aeroelastic simulation[J]. Chinese Journal of Computational Mechanics, 2011, 28(5):807-812(in Chinese).
[16] WAZNY M, JASZTAL M, SZAJNAR S. CFD-Fastran-Software package for numerical analysis of flow around a body by the air stream[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2008, 40(4):55-62.
[17] 李勇, 刘志友, 安亦然. 介绍计算流体力学通用软件——Fluent[J]. 水动力学研究与进展, 2001, 16(2):254-258. LI Y, LIU Z Y, AN Y R. A brief introduction to Fluent-A general purpose CFD code[J]. Journal of Hydrodynamics, 2001, 16(2):254-258(in Chinese).
[18] JASAK H. OpenFOAM:Open source CFD in research and industry[J]. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(2):89-94.
[19] SMITH M J, QUON E. Advanced data transfer strategies for overset computational methods:AIAA-2015-0566[R]. Reston, VA:AIAA, 2015.
[20] HNER R. Robust, vectorized search algorithms for interpolation on unstructured grids[J]. Journal of Computational Physics, 1995, 118(2):380-387.
[21] OLSSON F, PETERSSON N A. Stability of interpolation on overlapping grids[J]. Computers and Fluids, 1996, 25(6):583-605.
[22] 王永健. Arbitrary Lagrangian-Eulerian方法及其关键技术研究[D]. 南京:南京航空航天大学, 2008:36-50. WANG Y J. Research on Arbitrary Lagrangian-Eulerian method and its key technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008:36-50(in Chinese).
[23] 董海波, 徐春光, 刘君. 基于单元变形的网格间流场信息传递方法[J]. 国防科技大学学报, 2016, 38(4):21-27. DONG H B, XU C G, LIU J. New method for transferring flow information among meshes based on mesh deformation[J]. Journal of National University of Defense Technology, 2016, 38(4):21-27(in Chinese).
[24] 徐喜华, 刘娜, 陈艺冰. 非结构多面体二阶局部保界全局重映算法[J]. 计算物理, 2018, 35(1):22-28. XU X H, LIU N, CHEN Y B. Second-order local-bound-preserving conservative remapping on unstructured polyhedral meshes[J]. Chinese Journal of Computational Physics, 2018, 35(1):22-28(in Chinese).
[25] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1-4):231-245.
[26] BOTTASSO C L, DETOMI D, SERRA R. The ball-vertex method:A new simple spring analogy method for unstructured dynamic meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4244-4264.
[27] BOER A D, SCHOOT M S V D, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11-14):784-795.
[28] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[29] WANG G, MIAN H H, YE Z Y, et al. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions[J]. AIAA Journal, 2015, 53(4):1016-1025.
[30] STROFYLAS G A, LYGIDAKIS G N, NIKOLOS I K. An agglomeration strategy for accelerating RBF-based mesh deformation[J]. Advances in Engineering Software, 2017, 107:13-37.
[31] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1):389-396.
[32] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9):509-517.
[33] QUINN M J. Parallel programming in C with MPI and OpenMP[J]. Beijing:Tsinghua University Press, 2004:74-88(in Chinese).
[34] KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1):359-392.
[35] BESA J, ETEROVIC Y. A concurrent red-black tree[J]. Journal of Parallel and Distributed Computing, 2013, 73(4):434-449.
[36] HEIM E R. CFD Wing/Pylon/Finned store mutual interference wind tunnel experiment:ADEC-TSR-91-P4[R]. 1991.
文章导航

/