在开源软件OpenFOAM的两相流动态解算器中添加了激励盘,数值研究了考虑动力影响的大型四发涡桨水陆两栖飞机在水面高速滑行时的典型力学特性。针对水陆两栖飞机的特殊性,全面考虑了飞机高速滑行时的水动力、气动力、地面效应以及螺旋桨的动力影响,较为真实地模拟了飞行器水上起飞的瞬时状态。首先,在interDyMFoam中添加了激励盘模型,以体积力的形式将螺旋桨旋转产生的动量注入流场,用以模拟飞机起飞时大拉力情况下滑流的动力学影响,较螺旋桨非定常模拟方法大幅减少了计算量。其次,对Wigley船体标模和螺旋桨单桨模型分别进行了考核,验证了OpenFOAM的水动力计算能力并确认了新加入的动态激励盘方法的可靠性。最后,利用建立的方法研究了水陆两栖飞机水面单断阶滑行过程中的气动力和水动力特性并给出了滑流和动力的影响规律。
An actuator disk method is coupled with the dynamic two-phase flow solver in OpenFOAM. A numerical study is conducted for the dynamic characteristics of an amphibious aircraft with four turboprop engines during taxiing at high speed on water. Considering the particularity of amphibious aircraft, the effects of hydrodynamics, aerodynamics, slipstream of propellers together with the ground effect of water are studied simultaneously by simulating the instantaneous state when the aircraft is about to leave water. Firstly, to simulate the slipstream of propellers during takeoff, an actuator disk code is added in interDyMFoam solver, which greatly improves the efficiency of computation compared with the direct simulation of propeller rotation.The momentum generated by the rotation of the propeller is injected into the flow field in the form of volume force to simulate the dynamic effect of the slipstream of the large thrust during the aircraft takeoff process. Secondly, both the hydrodynamic calculation ability of OpenFOAM and the newly added actuator disk are validated through the Wigley model of towing tank test and the single propeller wind tunnel test. At last, the characteristics of hydrodynamics and aerodynamics of amphibious aircraft taxiing at high speed on water are analyzed by the coupled solver and the thrust of power combined with slipstream effect is investigated as well.
[1] REMINGTON W. The Canadair CL-215 amphibious aircraft-Development and applications:AIAA-1989-1541[R]. Reston, VA:AIAA, 1989.
[2] LARSSON L, STERN F, BERTRAM V. Benchmarking of computational fluid dynamics for ship flows:The Gothenburg 2000 workshop[J]. Journal of Ship Research, 2003, 47(1):63-81.
[3] MAVRIPLIS D J, VASSBERG J C, TINOCO E N, et al. Grid quality and resolution issues from the drag prediction workshop series[J]. Journal of Aircraft, 2009, 46(3):935-950.
[4] QIU L J, SONG W B. Efficient decoupled hydrodynamic and aerodynamic analysis of amphibious aircraft water takeoff process[J]. Journal of Aircraft, 2013, 50(5):1369-1379.
[5] QU Q L, LIU C S, LIU P Q. Numerical simulation of water-landing performance of a regional aircraft[J]. Journal of Aircraft, 2016, 53(6):1680-1689.
[6] RANKINE W J M. On the mechanical principles of the action of propellers[J]. Transactions of the Institution of Naval Architects, 1865, 6:13-39.
[7] FROUDE R E. On the part played in propulsion by differences of fluid pressure[J]. Transactions of the Institution of Naval Architects, 1889, 30:390-423.
[8] FROUDE W. On the elementary relation between pitch, slip, and propulsive efficiency:NASA-TM-X-61726[R]. Washington, D.C.:NASA, 1920.
[9] GLAUERT H. Airplane propellers[M]. Berlin:Springer, 1935:169-360.
[10] MARQUEZ G C, STUERMER A, CLEMEN C, et al. Validation of actuator disk simulations of CROR propulsion systems at low-speed flight conditions:AIAA-2012-2787[R]. Reston, VA:AIAA, 2012.
[11] 夏贞锋, 罗淞, 杨永. 基于激励盘理论的螺旋桨滑流数值模拟研究[J]. 空气动力学学报, 2012, 30(2):219-222. XIA Z F, LUO S, YANG Y. Numerical simulations of propeller slipstream flows using actuator disk theory[J]. Acta Aerodynamica Sinica, 2012, 30(2):219-222(in Chinese).
[12] GREENSHIELDS C J. OpenFOAM user guide, version 4.0[M]. London:OpenFOAM Foundation Ltd., 2015.
[13] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1):40-65.
[14] RHIE C M, CHOW W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA Journal, 1983, 21(11):1525-1532.
[15] KARRGOLM F P. Rhie-Chow interpolation in OpenFOAM[R/OL].(2006-5-22)[2018-03-14]. http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/rhiechow.pdf.
[16] BARRON R M, SALEHI N A. Effects of under? relaxation factors on turbulent flow simulations[J]. International Journal for Numerical Methods in Fluids, 2003, 42(8):923-928.
[17] MENTER F R, CARREGAL F J, ESCH T, et al. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines[C]//Proceedings of the International Gas Turbine Congress, 2003.
[18] JASAK H, TUKOVIĆ Z. Automatic mesh motion for the unstructured finite volume method[J]. Transactions of FAMENA, 2006, 30(2):1-20.
[19] SVENNING E. Implementation of an actuator disk in OpenFOAM[R/OL]. (2010-10-30)[2018-03-14].http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/erikSvenning/erikSvenningReport.pdf.
[20] GOLDSTEIN S. On the vortex theory of screw propellers[J]. Proceedings of the Royal Society of London Series A, 1929, 123(792):440-465.
[21] SHOEMAKER J M, BELL J W. Complete tank tests of two flying-boat hulls with pointed steps:NACA-TN-504[R]. Washington, D.C.:NACA, 1934.
[22] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turboprop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).
[23] 胡国才, 刘嘉, 孙建国. 螺旋桨飞机近地飞行时的纵向稳定性[J]. 海军航空工程学院学报, 2009, 24(6):601-604. HU G C, LIU J, SUN J G. Longitudinal stability of propeller aircraft during low altitude flight[J]. Journal of Naval Aeronautical and Astronautical University, 2009, 24(6):601-604(in Chinese).
[24] 孙华伟. 滑行面形状对滑行艇阻力与航态影响数值分析[D]. 哈尔滨:哈尔滨工程大学, 2012:1-50. SUN H W. Numerical analysis of planning-hull surface shape on resistance and sailing attitude[D]. Harbin:Harbin Engineering University, 2012:1-50(in Chinese).
[25] 褚林塘. 水上飞机水动力设计[M]. 北京:航空工业出版社, 2014:67-123. CHU L T. Seaplane hydrodynamic design[M]. Beijing:Aviation Industry Press, 2014:67-123(in Chinese).
[26] YANG Z, YANG W. Complex flow for wing-in-ground effect craft with power augmented ram engine in cruise[J]. Chinese Journal of Aeronautics, 2010, 23(1):1-8.