流体力学与飞行力学

基于前体激波的内转式进气道一体化设计

  • 乔文友 ,
  • 余安远 ,
  • 杨大伟 ,
  • 乐嘉陵
展开
  • 1. 西南科技大学 燃烧空气动力学研究中心, 绵阳 621010;
    2. 中国空气动力研究与发展中心 高超声速冲压发动机技术重点实验室, 绵阳 621000;
    3. 中国空气动力研究与发展中心 吸气式高超声速技术研究中心, 绵阳 621000

收稿日期: 2018-02-05

  修回日期: 2018-07-03

  网络出版日期: 2018-07-13

基金资助

国家自然科学基金(11702229)

Integration design of inward-turning inlets based on forebody shock wave

  • QIAO Wenyou ,
  • YU Anyuan ,
  • YANG Dawei ,
  • LE Jialing
Expand
  • 1. Research Center of Combustion Aerodynamics, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Science and Technology on Scramjet Laboratory, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Airbreathing Hypersonic Technology Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2018-02-05

  Revised date: 2018-07-03

  Online published: 2018-07-13

Supported by

National Natural Science Foundation of China (11702229)

摘要

在腹部进气的乘波前体/内转式进气道的一体化设计中,为使进气道捕获截面和唇口型线的形状与飞行器前体激波较好匹配,提出一种基于前体激波形状的一体化设计方法。首先,计算乘波前体流场并提取前体激波形状;其次,将进气道捕获型线(ICC)投影在前体激波曲面上,得到可全流量捕获的进气道唇口型线(IFCC);再次,给定进气道基本流场的中心体轴线位置,确定基本流场的入射激波形状;然后,给定基本流场的沿程压缩规律,应用特征线法确定进气道的基本流场;最后,将ICC顺来流方向投影至进气道入射激波曲面上,经流线追踪和黏性修正得到最终的进气道型面。数值模拟结果表明,对于典型飞行器前体,在设计马赫数为7.0的条件下,应用该方法得到的进气道流量捕获系数达0.976,隔离段出口截面的马赫数、压比和总压恢复系数分别为3.17、38.9和0.487。

本文引用格式

乔文友 , 余安远 , 杨大伟 , 乐嘉陵 . 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018 , 39(10) : 122078 -122078 . DOI: 10.7527/S1000-6893.2018.22078

Abstract

To achieve better matching between the shape of the capture section and inlet entrance line and the forebody shock wave, an integration design method is proposed based on the shape of the forebody shock wave for the integration design of waverider forebody/inward-turning inlet with the intake of abdomen. First, the flow field of the waverider forebody is calculated, and the forebody shock surface is extracted. Second, the Inlet Full Capture Curve (IFCC) is acquired by projecting the Inlet Capture Curve (ICC) on the forebody shock surface. Third, the shape of the incident shock in the basic flow field is determined after the axis of center body is given. Then, the basic flow field is determined by the method of characteristic after the distribution law of the Mach number along the compression boundary is presented. Finally, the inlet lip is obtained through the projection of ICC on the incident shock surface of the inlet in the direction of the incoming flow, and the final inlet surface is obtained through streamline-tracing and viscosity correction. Numerical results show that the inlet mass capture coefficient reaches 0.976 at Mach number 7.0 for a typical waverider forebody, and the Mach number, pressure ratio and total pressure recovery coefficient at the isolator exit are 3.17, 38.9, and 0.487, respectively.

参考文献

[1] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA, 1994:197-267.
[2] KASHIF H J, VARNAVAS C S. Airframe-propulsion integration methodology for waverider-derived hypersonic cruise aircraft design concepts:AIAA-2004-1201[R]. Reston, VA:AIAA, 2004.
[3] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese).
[4] 贺旭照, 乐嘉陵. 曲外锥乘波体进气道实用构型设计和性能分析[J]. 航空学报, 2017, 38(6):9-19. HE X Z, LE J L. Design and performance analysis of practical curved cone waverider inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):9-19(in Chinese).
[5] 李永洲, 孙迪, 张堃元. 前后缘型线同时可控的乘波体设计[J]. 航空学报, 2017, 38(1):76-85. LI Y Z, SUN D, ZHANG K Y. Waverider design for controlled leading and trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):76-85(in Chinese).
[6] TAKASHIMA N, LEWIS M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration:AIAA-1994-0380[R]. Reston, VA:AIAA, 1994.
[7] JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1993, 32(6):957-963.
[8] 王卓, 钱翼稷. 乘波机外形设计[J]. 北京航空航天大学学报, 1999, 25(2):180-183. WANG Z, QIAN Y J.Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):180-183(in Chinese).
[9] 张杰, 王发民. 乘波器的参数化设计研究[J]. 空气动力学学报, 2008, 26(1):115-118. ZHANG J, WANG F M. Parametric waveriders design method study[J]. Acta Aerodynamica Sinica, 2008, 26(1):115-118(in Chinese).
[10] HE X Z, LE J L, ZHOU Z, et al. Osculating Inward turning Cone Waverider/Inlet (OICWI) design methods and experimental study:AIAA-2012-5810[R]. Reston, VA:AIAA, 2012.
[11] YOU Y C, ZHU C X, GUO J L. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody:AIAA-2009-7421[R]. Reston, VA:AIAA, 2009.
[12] GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4):1-15.
[13] 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J]. 航空学报, 2015, 36(1):274-288. ZHANG K Y. Research progress of hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):274-288(in Chinese).
[14] 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京:南京航空航天大学, 2012:15-61. NAN X J.Investigation on design methodology of hypersonic inward turning inlets with controlled pressure rise law[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:15-61(in Chinese).
[15] 李永洲. 马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D]. 南京:南京航空航天大学, 2014:52-92. LI Y Z.Investigation of hypersonic inward turing inlet with controlled Mach number distribution and its integrated design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:52-92(in Chinese).
[16] 李怡庆, 韩伟强, 尤延铖, 等. 压力分布可控的高超声速进气道/前体一体化乘波设计[J]. 航空学报, 2016, 37(9):2711-2720. LI Y Q, HAN W Q, YOU Y C, et al.Integration waverider design of hypersonic inlet and forebody with preassigned pressure distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2711-2720(in Chinese).
[17] 施崇广, 李怡庆, 韩伟强, 等. 超声速流场的流线-特征线坐标变换与应用[J]. 推进技术, 2017, 38(5):1016-1022. SHI C G, LI Y Q, HAN W Q, et al. Conversion and application of streamline-characteristic coordinate system in supersonic flows[J]. Journal of Propulsion Technology, 2017, 38(5):1016-1022(in Chinese).
[18] 钱翼稷. 超音速轴对称有旋流特征线法的计算程序[J]. 北京航空航天大学学报, 1996, 22(4):454-459. QIAN Y J. Computer program of supersonic axisymmetric rotational characteristic method[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(4):454-459(in Chinese).
[19] 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报, 2014, 29(6):1444-1452. QIAO W Y, HUANG G P, XIA C, et al. Development of inverse characteristic method for matching design of high-speed aircraftforebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6):1444-1452(in Chinese).
[20] KOSCHEL W, NOVELLI P. JAPHAR:A joint ONERA-DLR research project on high speed airbreathing propulsion:ISABE-1999-7091[R]. Cranfield:ISABE, 1999.
[21] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科技大学, 2008:27-30. WANG Y. Investigation on the starting characteristics of hypersonicinlet[D]. Changsha:National University of Defense Technology, 2008:27-30(in Chinese).
[22] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416.
[23] DRAYNA T, NOMPELIS I, CANDLER G. Hypersonic inward turning inlets:Design and optimization:AIAA-2006-0297[R]. Reston, VA:AIAA, 2006.
[24] 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3):563-570. LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basicflowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3):563-570(in Chinese).
文章导航

/