流体力学与飞行力学

HiLiftPW-3高升力构型数值模拟

  • 洪俊武 ,
  • 王运涛 ,
  • 李伟 ,
  • 杨小川
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2018-05-30

  修回日期: 2018-06-14

  网络出版日期: 2018-07-09

基金资助

国家重点研究发展计划(2016YFB0200700)

Numerical simulation of high-lift configuration from HiLiftPW-3

  • HONG Junwu ,
  • WANG Yuntao ,
  • LI Wei ,
  • YANG Xiaochuan
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073, China

Received date: 2018-05-30

  Revised date: 2018-06-14

  Online published: 2018-07-09

Supported by

National Key Research and Development Program of China (2016YFB0200700)

摘要

基于雷诺平均Navier-Stokes方程和拼接网格技术,采用MUSCL-Roe格式和Spalart-Almaras一方程湍流模型,对第3届高升力构型性能预测会议提供的两组高升力标模进行了数值模拟,主要目的是确认本文计算方法模拟复杂高升力构型的能力。研究内容主要包括高升力构型网格生成技术、网格收敛性研究及气动特性数值模拟。通过与JAXA (Japan Aerospace eXploration Agency)提供的测压、测力试验结果的对比分析,表明,在失速迎角之前,数值模拟得到的气动力系数和压力分布均与试验结果吻合;较好地模拟了局部外形变化引起的气动特性差量。本文建立的数值模拟方法对典型运输机三段翼布局的低速问题具有良好的适用性,可以为大飞机低速构型的气动设计及评估提供技术支撑。

本文引用格式

洪俊武 , 王运涛 , 李伟 , 杨小川 . HiLiftPW-3高升力构型数值模拟[J]. 航空学报, 2019 , 40(3) : 122391 -122391 . DOI: 10.7527/S1000-6893.2018.22391

Abstract

Based on the Reynolds-averaged Navier-Stokes equations and cross-grid technology, this paper adopts the second-order MUSCL-Roe scheme and SA turbulence model to simulate two kinds of high-lift configurations from HiLiftPW-3. To validate the paper's numerical methods, the grid-convergence and aerodynamic characters for high-lift configuration are simulated. The comparison with the experimental data of pressure and aerodynamic force from JAXA (Japan Aerospace eXploration Agency) shows that, before reaching the stall angle, the aerodynamic coefficients of the numerical simulation and Cp distribution are highly anastomosed with the experimental data, providing a preferable simulation of the aerodynamic characters of dispersion from the variation of local configurations. The paper's numerical methods are well applicable to the typical high-lift configuration and could provide technological support for the aerodynamic design of civil plane in low-speed configuration.

参考文献

[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R].Washington,D.C.:NASA, 2014.
[2] CHRISTOPHER L R, SUSAN X Y. Prediction of high lift:Review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180.
[3] TINOCO E N, BOGUE D R. Progress toward CFD for full flight envelope[J]. Aeronautical Journal, 2005,109:451-460
[4] ROGERS S E, ROTH K, NASH S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10):1884-1892.
[5] RUMSEY C L, GATSKI T B, SUSAN X Y, et al. Prediction of high-lift flows using turbulent closure models:AIAA-1997-2260[R]. Reston, VA:AIAA, 1997.
[6] RUDNIK R, VON GEYR H F. The European high lift project EUROLIFT Ⅱ-objectives, approach, and structure:AIAA-2007-4296[R]. Reston, VA:AIAA, 2007.
[7] RUMSEY C L, LONG M, STUEVER R A. Summary of the first AIAA CFD high lift prediction workshop(invited):AIAA-2011-939[R]. Reston, VA:AIAA, 2011.
[8] 王运涛, 洪俊武, 孟德虹. 湍流模型对梯形翼高升力构型的影响[J]. 空气动力学学报, 2013, 31(1):52-55. WANG Y T, HONG J W, MENG D H. The influence of turbulent models to trap wing simulation[J]. Acta Aerodynamica Sinica, 2013, 31(1):52-55(in Chinese).
[9] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H,et al.Numerical study on simulation technology of the high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[10] 王运涛, 李松, 孟德虹, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, MENG D H, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese).
[11] 洪俊武, 王运涛, 孟德虹. 结构网格方法对高升力构型的应用研究[J]. 空气动力学学报, 2013, 31(1):75-81. HONG J W, WANG Y T, MENG D H. Numerical research of high-lift configurations by structured mesh method[J]. Acta Aerodynamica Sinica, 2013, 31(1):75-81(in Chinese).
[12] 王运涛, 孟德虹, 邓小刚. 多段翼型高精度数值模拟技术研究[J]. 空气动力学学报, 2013, 31(1):88-93. WANG Y T, MENG D H, DENG X G. High-order numerical study of complex flow over multi-element airfoil[J]. Acta Aerodynamica Sinica, 2013, 31(1):88-93(in Chinese).
[13] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[14] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S, WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS scheme[J]. Acta Aerodynamica Sinica, 2014, 32(4):439-445(in Chinese).
[15] 赵轲, 高正红, 黄江涛, 等. 基于分区拼接网格技术高升力装置流场数值模拟[J]. 应用力学学报, 2012, 29(1):70-75. ZHAO K, GAO Z H, HUANG J T, et al. Numerical simulation of flow around high-lift device based on zonal patched-grid technology[J]. Chinese Journal of Applied Mechanics, 2012, 29(1):70-75(in Chinese).
[16] 李萍, 李根国, 张小柯, 等. NASA高升力TrapWing全展模型的数值模拟[J]. 力学季刊, 2012, 33(2):249-255. LI P, LI G G, ZHANG X K, et al. Numerical simulation of NASA high lift trapwing full span model[J]. Chinese Quarterly of Mechanics, 2012, 33(2):249-255(in Chinese).
[17] 颜洪, 麻蓉, 聂智军, 等. 高升力标模确认计算研究[J]. 航空计算技术, 2014, 44(1):34-44. YAN H, MA R, NIE Z J, et al. CFD validation for a high-lift model[J]. Aeronautical Computing Technique, 2014, 44(1):34-44(in Chinese).
[18] 高飞飞, 颜洪, 芦彩香. NASA Trap Wing高升力标模数值模拟研究[J]. 航空计算技术, 2015, 45(1):84-90. GAO F F, YAN H, LU C X. Numerical simulation research of NASA trap wing model[J]. Aeronautical Computing Technique, 2015, 45(1):84-90(in Chinese).
[19] 赵钟, 赫新, 张来平, 等. HyperFLOW软件数值模拟Trap Wing高升力外形[J]. 空气动力学学报, 2015, 33(5):594-602. ZHAO Z, HE X, ZHANG L P, et al. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. Acta Astronautica Sinica, 2015, 33(5):594-602(in Chinese).
[20] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[21] VAN LEER B. Towards the ultimate conservation difference scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[22] YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equation[J]. AIAA Journal,1988, 26(9):1025-1026.
[23] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
[24] RUMSEY C L, SLOTNICK J P. Overview and summary of the second AIAA high lift prediction workshop:AIAA-2014-0747[R]. Reston, VA:AIAA, 2014.
文章导航

/