舰载机气动强度与着舰安全性关键技术专栏

基于动态重叠网格方法的尾翼对螺旋桨滑流的影响

  • 缪涛 ,
  • 陈波 ,
  • 马率 ,
  • 杨小川 ,
  • 丁兴志
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2018-05-18

  修回日期: 2018-06-04

  网络出版日期: 2018-07-04

Influence of tail wing on propeller slipstream based on dynamic overlapping grid method

  • MIAO Tao ,
  • CHEN Bo ,
  • MA Shuai ,
  • YANG Xiaochuan ,
  • DING Xingzhi
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. AVIC The First Aircraft Design Institute, Xi'an 710089, China

Received date: 2018-05-18

  Revised date: 2018-06-04

  Online published: 2018-07-04

摘要

螺旋桨飞机产生的滑流会对其扫掠过的部件产生显著干扰,研究尾翼部件对滑流的影响有助于将滑流与尾翼的干扰进行解耦分解。采用动态重叠网格方法模拟螺旋桨定轴转动,通过求解三维非定常雷诺平均Navier-Stokes (URANS)方程,数值模拟了某螺旋桨飞机带尾翼构型的有/无滑流状态,通过试验结果对计算方法的正确性进行了验证。在此基础上,分别开展了有/无尾翼构型的滑流计算,结果表明:扣除尾翼气动力后,有/无尾翼的升阻力变化规律基本一致,俯仰力矩由于机身后体修形不同呈线性平移关系;对比有/无尾翼空间切面的速度分布云图、不同空间位置和拉力系数下的下洗角和侧洗角变化曲线,发现尾翼对滑流的影响仅局限在其周围,不同拉力系数下尾翼的干扰规律也基本类似。通过研究认为,在飞机初期设计和选型阶段,螺旋桨滑流与尾翼的相互干扰,可简化为滑流单向对尾翼产生影响,尾翼对滑流的影响可以忽略。

本文引用格式

缪涛 , 陈波 , 马率 , 杨小川 , 丁兴志 . 基于动态重叠网格方法的尾翼对螺旋桨滑流的影响[J]. 航空学报, 2019 , 40(4) : 622338 -622338 . DOI: 10.7527/S1000-6893.2018.22338

Abstract

The slipstream produced by the propeller airplane will significantly interfere with the swept components. The study of the effect of the tail wing on the slipstream will help to decouple the slipstream and tail wing disturbances. The dynamic overlapping grid method is used to simulate the rotation of the propeller fixed axis. By solving the three-dimensional Unsteady Reynolds Average Navier-Stokes(URANS) equations, the state of a propeller airplane with tail wing with/without slipstream is simulated numerically. The correctness of the calculation method is verified by the experimental results. On this basis, calculations of the slipstream of the configuration with/without tail wing are carried out. The results show that the lift and drag aerodynamics variation law are almost the same after deducting of the aerodynamic force of the tail wing. The pitching moment is different due to the modification of the fuselage rear body. By comparing the slice velocity distribution clouds of the configurations with/without tail wing, variation curves of the down wash angle and the side wash angle at different spatial positions and with different thrust coefficients, it is found that the effect of the tail wing on the slipstream is only limited to the surroundings, and the rules of disturbance of the tail wing with different thrust coefficients are also very similar. Based on the study, it can be concluded that at the preliminary and selection stages of the airplane design, the mutual interference between the propeller slipstream and the tail wing can be simplified to be a one-way effect of the slipstream on the tail wing, and the effect of the tail wing on the slipstream can be ignored.

参考文献

[1] 夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安:西北工业大学, 2015. XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an:Northwestern Polytechnical University, 2015(in Chinese).
[2] 杨小川. 螺旋桨/风力机的定常与非定常数值模拟技术研究[D]. 绵阳:中国空气动力研究与发展中心, 2013. YANG X C. Investigation of the numerical simulation on porpeller/wind turbine using steady and unsteady methods[D]. Mianyang:China Aerodynamics Research and Development Center, 2013(in Chinese).
[3] LENFERS C, BECK N, RADESPIEL R. Numerical and experimental investigation of propeller slipstream interaction with active high lift wing[C]//35th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2017.
[4] ROOSENBOOM E W M, HEIDER A, SCHR DER A. Investigation of the propeller slipstream with particle image velocimetry[J]. Journal of Aircraft, 2009, 46(2):442-449.
[5] ROOSENBOOM E W M, ST RMER A, SCHR DER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1):284-291.
[6] 陆浩. 基于螺旋桨等效盘模型的滑流影响研究[D]. 南京:南京航空航天大学, 2014. LU H. Numerical investigation of propeller slipstream effects with actuator disk model[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[7] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):845-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852(in Chinese).
[8] 任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017, 35(3):383-391. REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3):383-391(in Chinese).
[9] 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9):2669-2678. WANG K L, ZHU X P, ZHOU Z, et al. Distrubuted electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese).
[10] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[11] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[12] 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6):1366-1373. QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing intercation[J]. Journal of Aerospace Power, 2015, 30(6):1366-1373(in Chinese).
[13] CHADHA S A, POMEROY B W, SELIG M S. Computational study of a lifting surface in propeller slipstreams[C]//34th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2016.
[14] 陈荣钱, 王旭, 尤延铖. 短舱对螺旋桨滑流影响的IDDES数值模拟[J]. 航空学报, 2016, 37(6):1851-1860. CHEN R Q, WANG X, YOU Y C. Numerical simulation of nacelle's effects on propeller slipstream based on IDDES model[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1851-1860(in Chinese).
[15] 潘鑫智. 螺旋桨与发动机短舱/进气道的气动影响研究[D]. 南京:南京航空航天大学, 2014. PAN X Z. Research on aerodynamic interference between propeller and engine nacelle/intake[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[16] 徐弘历. 涡桨飞机进气道设计方法及性能研究[D]. 南京:南京航空航天大学, 2016. XU H L. Analytical design of turboprop s-duct intake[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[17] 李兴伟, 李聪, 高静, 等. 螺旋桨滑流对飞机纵向气动特性的影响研究[J]. 实验流体力学, 2017, 31(5):46-53. LI X W, LI C, GAO J, et al. Propeller slipstream effect on longitudinal aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5):46-53(in Chinese).
[18] LI C, ZHENG G, ZHONG X H. Research on the effect of propeller slipstream on twin boom UAV trim characteristic[C]//34th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2016.
[19] 王伟, 段卓毅, 耿建中, 等. 考虑螺旋桨滑流影响的双发涡桨飞机气动特性研究[J]. 西北工业大学学报, 2017, 35(6):1105-1111. WANG W, DUAN Z Y, GENG J Z, et al. Aerodynamics analysis of twin-turboprop aircraft with propeller slipstream effects considered[J]. Journal of Northwestern Polytechnical University, 2017, 35(6):1105-1111(in Chinese).
[20] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[21] 肖中云, 江雄, 牟斌, 等. 并行环境下外挂物动态分离过程的数值模拟[J]. 航空学报, 2010, 31(8):1509-1516. XIAO Z Y, JIANG X, MOU B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1509-1516(in Chinese).
[22] 马率. 空气螺旋桨滑流非定常数值模拟方法及影响规律研究[D]. 绵阳:中国空气动力研究与发展中心, 2017. MA S. Air propeller slipstream unsteady numerical simulation method and influence law research[D]. Mianyang:China Aerodynamics Research and Development Center, 2017(in Chinese).
文章导航

/